

183558 IZMX16H4-V16F-1

Overview

Specifications

Resources

DELIVERY PROGRAM

Delivery program

Technical data

Product range

Air circuit-breakers/switch-disconnectors

Design verification as per IEC/EN 61439

Product range Open circuit-breakers

Current Range Up to 4000 A

Technical data ETIM 7.0

Protective function Selective operation

Dimensions

Installation type

Fixed

Main terminals must be separately ordered.

Construction size IZMX16

Release system **Bectronic release** Standard/Approval Number of poles 4 pole Degree of Protection IP31 with door seals, IP55 with protective cover suitable for zone selectivity optionally fittable by user with comprehensive accessories Rated current = rated uninterrupted current $[I_n = I_u]$ 1600 A up to 440 V 50/60 Hz [lcu] 66 kA up to 440 V 50/60 Hz [I_{cs}] 50 kA Overload release, min. [I_r] 640 A Overload release, \max . [I $_r$] 1600 A Non-delayed $[I_i = I_n x ...]$ 2 - 15, OFF Delayed $_{\boxtimes I \geq} [I_{sd} = I_r \times ...]$ 1,5 - 10

TECHNICAL DATA

General

Ambient temperature Storage [8] -20 - +70 °C

Ambient temperature Ambient temperature -20 - +70 °C

Mounting position

Utilization category

Е

Degree of Protection IP31 with door seals, IP55 with protective cover

Direction of incoming supply as required

Main conducting paths

Rated current = rated uninterrupted current [$I_n = I_u$] 1600 A

Rated uninterrupted current at 50 $^{\circ}\text{C}\left[I_{u}\right]$ 1500 A

Rated uninterrupted current at 60 $^{\circ}\text{C}\left[I_{u}\right]$ 1400 A

Rated uninterrupted current at 70 $^{\circ}\text{C}\left[I_{u}\right]$ 1350 A

Pated impulse withstand voltage [U_{mp}]
12000 V AC

Pated operational voltage [U_d]
690 V AC

Use in IT electrical power networks up to [U]
440 V

Overvoltage category/pollution degree IIV3

Pated insulation voltage [U_d]
1000 V

Switching capacity

Pated short-circuit making capacity [U_m]
up to 440 V 50/60 Hz [U_m]
145 kA

Rated short-circuit making capacity [l_{cm}] up to 690 V 50/60 Hz [l_{cm}] 88 kA

Rated short-time withstand current 50/60 Hz $t = 1 s [l_{cw}]$ 42 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] IEC/EN 60947 operating sequence l_{cu} O-t-CO up to 240 V 50/60 Hz [l_{cu}] 85 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] IEC/EN 60947 operating sequence l_{cu} O-t-CO up to 440 V 50/60 Hz [l_{cu}] 66 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] IEC/EN 60947 operating sequence l_{cu} O-t-CO up to 690 V 50/60 Hz [l_{cu}] 42 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] IEC/EN 60947 operating sequence l_{cs} O-t-CO-t-CO

up to 240 V 50/60 Hz [lcs] 50 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] IEC/EN 60947 operating sequence l_{cs} O-t-CO-t-CO up to 440 V 50/60 Hz [l_{cs}] 50 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] IEC/EN 60947 operating sequence l_{cs} O-t-CO-t-CO up to 690 V 50/60 Hz [l_{cs}] 42 kA

Operating times Closing delay via spring release 30 ms

Operating times Total opening delay via shunt release 30 ms

Operating times Total opening delay via undervoltage release 50 ms

Operating times

Total opening delay on non-delayed short-circuit release (up to complete arc quenching)

27 ms

Lifespan Lifespan, mechanical [Switching cycles (ONOFF)] 12500

Lifespan Lifespan, mechanical with maintenance [Switching cycles (ONOFF)] 25000.

Lifespan Lifespan, electrical [Switching cycles (ONOFF)] 10000

Lifespan Lifespan, electrical with maintenance [Switching cycles (ONOFF)] 20000. Heat dissipation at rated current I_n Fixed mounting 235 W

Weight

Fixed mounting 4-pole 24 kg

Terminal capacities

Copper bar Fixed mounting Black 2 x 5 x 100 mm

These are values used in separate switchgear. The actual values will depend on the temperature around the circuit-breaker, which is influenced by the ambient temperature, the degree of protection (IP), the mounting height, the partitions, and any external ventilation. Depending on the specific switchgear design, this may result in derating, which can then be compensated for by increasing the cross-sectional area. Temperature rise tests in the specific switchgear can provide specific and detailed information.

Permissible continuous current for circuit-breakers operating in switchboards at various internal ambient temperatures. The switchboard's internal ambient temperature should be estimated using the calculation methods of IEC regulation.

DESIGN VERIFICATION AS PER IEC/EN 61439

Technical data for design verification

Rated operational current for specified heat dissipation [I_{h}] 1600 A

Equipment heat dissipation, current-dependent $[P_{id}]$ 235 W

Operating ambient temperature min. -20 °C:

Operating ambient temperature max. +70 °C

IEC/EN 61439 design verification

10.2 Strength of materials and parts10.2.2 Corrosion resistanceMeets the product standard's requirements.

10.2 Strength of materials and parts 10.2.3.1 Verification of thermal stability of enclosures Meets the product standard's requirements.

10.2 Strength of materials and parts10.2.3.2 Verification of resistance of insulating materials to normal heatMeets the product standard's requirements.

10.2 Strength of materials and parts
10.2.3.3 Verification of resistance of insulating
materials to abnormal heat and fire due to internal
electric effects
Meets the product standard's requirements.

10.2 Strength of materials and parts 10.2.4 Resistance to ultra-violet (UV) radiation Weets the product standard's requirements.

10.2 Strength of materials and parts10.2.5 LiftingDoes not apply, since the entire switchgear needs to be evaluated.

10.2 Strength of materials and parts10.2.6 Mechanical impactDoes not apply, since the entire switchgear needs to be evaluated.

10.2 Strength of materials and parts

10.2.7 Inscriptions

Meets the product standard's requirements.

10.3 Degree of protection of ASSEVBLIES Does not apply, since the entire switchgear needs to be evaluated.

10.4 Clearances and creepage distances Meets the product standard's requirements.

10.5 Protection against electric shock
Does not apply, since the entire switchgear needs
to be evaluated.

10.6 Incorporation of switching devices and components

Does not apply, since the entire switchgear needs to be evaluated.

10.7 Internal electrical circuits and connections Is the panel builder's responsibility.

10.8 Connections for external conductors Is the panel builder's responsibility.

10.9 Insulation properties 10.9.2 Power-frequency electric strength Is the panel builder's responsibility.

10.9 Insulation properties 10.9.3 Impulse withstand voltage Is the panel builder's responsibility.

10.9 Insulation properties10.9.4 Testing of enclosures made of insulating materialIs the panel builder's responsibility.

10.10 Temperature rise
The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.

10.11 Short-circuit rating Is the panel builder's responsibility. The specifications for the switchgear must be observed.

10.12 Electromagnetic compatibility Is the panel builder's responsibility. The specifications for the switchgear must be observed.

10.13 Mechanical function

The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.

TECHNICAL DATA ETIM 7.0

Low-voltage industrial components (EG000017) / Power circuit-breaker for trafo/generator/installation protection (EC000228)

Bectric engineering, automation, process control engineering / Low-voltage switch technology / Orcuit breaker (LV < 1 kV) / Orcuit breaker for power transformer, generator and system protection (ecl@ss10.0.1-27-37-04-09 [AJZ716013])

Rated permanent current lu 1600 A

Rated voltage 690 - 690 V

Rated short-circuit breaking capacity lcu at 400 V, 50 Hz $_{65\,\mathrm{kA}}$

Overload release current setting 640 - 1600 A

Adjustment range short-term delayed short-circuit release 960 - 16000 A

Adjustment range undelayed short-circuit release 3200 - 24000 A

Integrated earth fault protection No

Type of electrical connection of main circuit Rail connection

Device construction Built-in device fixed built-in technique Suitable for DIN rail (top hat rail) mounting DIN rail (top hat rail) mounting optional No Number of auxiliary contacts as normally closed 0 Number of auxiliary contacts as normally open contact 0 Number of auxiliary contacts as change-over contact With switched-off indicator Yes With under voltage release No Number of poles Position of connection for main current circuit Back side Type of control element Push button Complete device with protection unit Motor drive integrated

Yes

Degree of protection (IP)

DIMENSIONS

- □ Door
- ☐ Contact surface flange terminal

