

192341 NZMN3-PX630-SVE

Overview

Specifications

Resources

DELIVERY PROGRAM

Delivery program

Product range Orcuit-breaker

Technical data

Design verification as

per IEC/EN 61439

Protective function

Systems, cable, selectivity and generator protection

Technical data ETIM 7.0

Standard/Approval

IEC

Characteristics

Installation type Plug-in units

Dimensions

Release system Bectronic release

Construction size

NZM3

Description

LSI overload protection and delayed and non-

delayed short-circuit protective device
Class 1 energy measurement, r.ms. value
measurement, and "thermal memory"
USB interface for configuration and test function
with Power Xpert Protection Manager software
Interface module in equipment supplied.
Optionally communication-capable with internal
Modbus RTU module or CAM

Number of poles 3 pole

Standard equipment Screw connection

Rated current = rated uninterrupted current $[I_n = I_u]$

Rated current = rated uninterrupted current [$I_h = I_u$] 630 A

Setting range

Overload trip
[l_r]
252 - 630 A

Short-circuit releases \downarrow [I_{rm}] Non-delayed \downarrow [$I_t = I_n \times ...$] 2-8

Short-circuit releases $[l_{km}]$ Delayed $[l_{sd} = l_r \times ...]$ 1.5 -7

TECHNICAL DATA

General

Standards IEC/EN 60947

Protection against direct contact Finger and back of hand proof to VDE 0106 Part Oimatic proofing Damp heat, constant, to IEC 60068-2-78 Damp heat, cyclic, to IEC 60068-2-30

Ambient temperature Ambient temperature, storage - 40 - +70 °C

Ambient temperature Operation -25 - +70 °C

Mechanical shock resistance (10 ms half-sinusoidal shock) according to IEC 60068-2-27 20 (half-sinusoidal shock 20 ms) g

Safe isolation to EN 61140 Between auxiliary contacts and main contacts 500 V AC

Safe isolation to EN 61140 between the auxiliary contacts 300 V AC

Weight 6.34 kg

Mounting position

Vertical and 90° in all directions With XFI earth-fault release:

- NZM1, N1, NZM2, N2: vertical and 90° in all directions
 - with plug-in unit
 - NZM1, N1, NZM2, N2: vertical, 90° right/left with withdrawable unit:
 - NZM3, N3: vertical, 90° right/left
- NZM4, N4: vertical with remote operator:
- NZM2, N(S)2, NZM3, N(S)3, NZM4, N(S)4: vertical and 90° in all directions

Direction of incoming supply as required

Degree of protection Device

In the operating controls area: IP20 (basic degree of protection) Degree of protection **Enclosures** With insulating surround: IP40 With door coupling rotary handle: IP66 Degree of protection **Terminations** Tunnel terminal: IP10 Phase isolator and strip terminal: IP00 Other technical data (sheet catalogue) Weight Temperature dependency, Derating Effective power loss **Circuit-breakers** Rated current = rated uninterrupted current $[I_n = I_u]$ 630 A Rated surge voltage invariability [U_{mp}] Main contacts 8000 V Rated surge voltage invariability [U_{imp}] Auxiliary contacts 6000 V Rated operational voltage [U_e] 690 V AC Overvoltage category/pollution degree Rated insulation voltage [U] 690 V

Use in unearthed supply systems \square 690 V

Switching capacity

Rated short-circuit making capacity $[I_{cm}]$

240 V [l_{cm}] 187 kA

Rated short-circuit making capacity [l_{cm}] 400/415 V [l_{cm}] 105 kA

Rated short-circuit making capacity [l_{cm}] 440 V 50/60 Hz [l_{cm}] 74 kA

Rated short-circuit making capacity [l_{cm}] 525 V 50/60 Hz [l_{cm}] 53 kA

Rated short-circuit making capacity [l_{cm}] 690 V 50/60 H [lc] 40 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 240 V 50/60 Hz [l_{cs}] 85 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 400/415 V 50/60 Hz [l_{cs}] 50 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 440 V 50/60 Hz [l_{cs}] 35 kA

Rated short-circuit breaking capacity $l_{\rm cn}$ [$l_{\rm cn}$] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 525 V 50/60 Hz [$l_{\rm cs}$] 13 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 690 V 50/60 Hz [l_{cs}] 5 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit-breaker.

Rated short-time withstand current $t = 0.3 \, s \, [l_{\text{sw}}]$ 3.3 kA

Rated short-time withstand current $t = 1 \text{ s } [I_{\text{cw}}]$ 3.3 kA

Utilization category to IEC/EN 60947-2 A

Lifespan, mechanical(of which max. 50 % trip by shunt/undervoltage release) [Operations] 15000

Lifespan, electrical AC-1 400 V 50/60 Hz [Operations] 5000

Lifespan, electrical AC-1 415 V 50/60 Hz [Operations] 5000

Lifespan, electrical AC-1 690 V 50/60 Hz [Operations] 3000

Lifespan, electrical Max. operating frequency 60 Ops/h

Total break time at short-circuit < 10 ms

Terminal capacity

Standard equipment Screw connection

Accessories required NZMB-XSVS

Optional accessories Box terminal Tunnel terminal connection on rear

Round copper conductor Box terminal Solid 2 x 16 mm²

Round copper conductor Box terminal Stranded 1 x (35 - 240) 2 x (25-120) mm²

Round copper conductor Tunnel terminal Solid 1 x 16 mm²

Round copper conductor Tunnel terminal Stranded 1-hole 1 x (16 - 185) mm²

Round copper conductor
Bolt terminal and rear-side connection
Direct on the switch
Solid
1 x 16
2 x 16 mm²

Round copper conductor
Bolt terminal and rear-side connection
Direct on the switch
Stranded
1 x (25 - 240)
2 x (25 - 240) mm²

Round copper conductor

Bolt terminal and rear-side connection

Connection width extension

Connection width extension

2 x 300 mm²

Al circular conductor Tunnel terminal Solid 1 x 16 mm²

Al circular conductor Tunnel terminal Stranded Stranded 1 x (25 - 185) ²⁾ mm²

Al circular conductor Tunnel terminal Stranded Double hole 1 x (50 - 240) 2 x (50 - 240) mm²

Al circular conductor Tunnel terminal Stranded ²⁾ Up to 240 mm² can be connected depending on the cable manufacturer.

Qu strip (number of segments x width x segment thickness)
Box terminal [min.]
6 x 16 x 0.8 mm

Ou strip (number of segments x width x segment thickness)

Box terminal [max.]

10 x 24 x 1.0

+ 5 x 24 x 1.0

(2 x) 8 x 24 x 1.0 mm

Ou strip (number of segments x width x segment thickness)

Bolt terminal and rear-side connection

Flat copper strip, with holes [min.]

6 x 16 x 0.8 mm

Qu strip (number of segments x width x segment thickness)

Bolt terminal and rear-side connection

Flat copper strip, with holes [max.]

10 x 32 x 1.0 + 5 x 32 x 1.0 mm

Ou strip (number of segments x width x segment thickness)

Bolt terminal and rear-side connection

Connection width extension

(2 x) 10 x 50 x 1.0 mm

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Screw connection M10 Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Direct on the switch [min.] 20 x 5 mm

Copper busbar (width x thickness) [mm]
Bolt terminal and rear-side connection
Direct on the switch [max.]
30 x 10
+ 30 x 5 mm

Copper busbar (width x thickness) [mm]
Bolt terminal and rear-side connection
Connection width extension
Connection width extension [max.]
2 x (10 x 50) mm

Control cables 1 x (0.75 - 2.5) 2 x (0.75 - 1.5) mm²

DESIGN VERIFICATION AS PER IEC/EN 61439

Technical data for design verification

Rated operational current for specified heat dissipation [In] $\ensuremath{\text{G30 A}}$

Equipment heat dissipation, current-dependent $[P_{id}]$ 119.07 W

Operating ambient temperature min. -25 °C

Operating ambient temperature max. +70 °C

IEC/EN 61439 design verification

10.2 Strength of materials and parts10.2.2 Corrosion resistanceMeets the product standard's requirements.

10.2 Strength of materials and parts10.2.3.1 Verification of thermal stability of enclosuresWeets the product standard's requirements.

10.2 Strength of materials and parts10.2.3.2 Verification of resistance of insulating materials to normal heatMeets the product standard's requirements.

10.2 Strength of materials and parts 10.2.3.3 Verification of resistance of insulating materials to abnormal heat and fire due to internal electric effects Weets the product standard's requirements.

10.2 Strength of materials and parts 10.2.4 Resistance to ultra-violet (UV) radiation Meets the product standard's requirements.

10.2 Strength of materials and parts10.2.5 LiftingDoes not apply, since the entire switchgear needs to be evaluated.

10.2 Strength of materials and parts
10.2.6 Mechanical impact
Does not apply, since the entire switchgear needs
to be evaluated.

10.2 Strength of materials and parts10.2.7 InscriptionsMeets the product standard's requirements.

10.3 Degree of protection of ASSEVBLIES

Does not apply, since the entire switchgear needs
to be evaluated.

10.4 Clearances and creepage distances Weets the product standard's requirements.

10.5 Protection against electric shock Does not apply, since the entire switchgear needs to be evaluated.

10.6 Incorporation of switching devices and components

Does not apply, since the entire switchgear needs to be evaluated.

10.7 Internal electrical circuits and connections Is the panel builder's responsibility.

10.8 Connections for external conductors Is the panel builder's responsibility.

10.9 Insulation properties 10.9.2 Power-frequency electric strength Is the panel builder's responsibility.

10.9 Insulation properties 10.9.3 Impulse withstand voltage Is the panel builder's responsibility.

10.9 Insulation properties 10.9.4 Testing of enclosures made of insulating material Is the panel builder's responsibility.

10.10 Temperature rise
The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.

10.11 Short-circuit rating Is the panel builder's responsibility. The specifications for the switchgear must be observed.

10.12 Bectromagnetic compatibility Is the panel builder's responsibility. The specifications for the switchgear must be observed.

10.13 Mechanical function
The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.

TECHNICAL DATA ETIM 7.0

Low-voltage industrial components (EG000017) / Power circuit-breaker for trafo/generator/installation protection (EC000228)

Bectric engineering, automation, process control engineering / Low-voltage switch technology / Orcuit breaker (LV < 1 kV) / Orcuit breaker for power transformer, generator and system protection (ecl@ss10.0.1-27-37-04-09 [AJZ716013])

Rated permanent current lu 630 A Rated voltage 690 - 690 V Rated short-circuit breaking capacity Icu at 400 V, 50 Hz 50 kA Overload release current setting 252 - 630 A Adjustment range short-term delayed short-circuit release 1.5 - 7 A Adjustment range undelayed short-circuit release 2-8A Integrated earth fault protection No Type of electrical connection of main circuit Other Device construction Built-in device plug-in technique Suitable for DIN rail (top hat rail) mounting DIN rail (top hat rail) mounting optional No Number of auxiliary contacts as normally closed contact 0

Number of auxiliary contacts as normally open

contact 0	
Number of auxiliary contacts as change-over contact 0	
With switched-off indicator No	
With under voltage release No	
Number of poles 3	
Position of connection for main current circuit Connection at separate chassis part	
Type of control element Rocker lever	
Complete device with protection unit Yes	
Motor drive integrated No	
Motor drive optional Yes	
Degree of protection (IP) IP20	

CHARACTERISTICS

Characteristic curve		
Characteristic curve		

Let-through current

Characteristic curve		
Let-through energy		

DIMENSIONS

☐ Blow out area, minimum clearance to adjacent parts ☐ Minimum clearance to adjacent parts	

Imprint | Privacy Policy | Legal Disclaimer | Terms and Conditions © 2020 by Eaton Industries GmbH