

192345 NZMH3-PX250-SVE				
Overview Specific	cations Resources			
Delivery program	DELIVERY PROGRAM			
Technical data	Product range Circuit-breaker			
Design verification as per IEC/EN 61439	Protective function Systems, cable, selectivity and generator protection			
Technical data ETIM7.0	Standard/Approval IEC			
Characteristics	Installation type Rug-in units			
Dimensions	Release system Electronic release			
	Construction size NZMB			
	Description LSI overload protection and delayed and non-			

delayed short-circuit protective device Class 1 energy measurement, r.ms. value measurement, and "thermal memory" USB interface for configuration and test function with Power Xpert Protection Manager software Interface module in equipment supplied. Optionally communication-capable with internal Modbus RTU module or CAM

Number of poles 3 pole

Standard equipment Screw connection

Switching capacity

400/415 V 50 Hz [l_{cu}] 150 kA

Rated current = rated uninterrupted current $[I_n = I_u]$

Rated current = rated uninterrupted current $[I_n = I_u]$ 250 A

Setting range

Overload trip []-[]-100 - 250 A

Short-circuit releases $I > [I_{rm}]$ Non-delayed $I > [I_i = I_n \times ...]$ 2 - 18

Short-circuit releases $[l_{rm}]$ Delayed $[l_{sd} = l_r \times ...]$ 2-10

TECHNICAL DATA

General

Standards IEC/EN 60947

Protection against direct contact Finger and back of hand proof to VDE0106 Part 100

Climatic proofing Damp heat, constant, to IEC 60068-2-78 Damp heat, cyclic, to IEC 60068-2-30

Ambient temperature Ambient temperature, storage -40 - +70 °C

Ambient temperature Operation -25 - +70 °C

Mechanical shock resistance (10 ms halfsinusoidal shock) according to IEC 60068-2-27 20 (half-sinusoidal shock 20 ms) g

Safe isolation to EN 61140 Between auxiliary contacts and main contacts 500 V AC

Safe isolation to EN 61140 between the auxiliary contacts 300 V AC

Weight 6.34 kg

Mounting position
Vertical and 90° in all directions
With XFI earth-fault release:
- NZM1, N1, NZM2, N2: vertical and 90° in all directions
with plug-in unit
- NZM1, N1, NZM2, N2: vertical, 90° right/left
with withdraw able unit:
- NZM3, N3: vertical, 90° right/left
- NZM4, N4: vertical
with remote operator:
- NZM2, N(S)2, NZM3, N(S)3, NZM4, N(S)4: vertical and 90° in all directions

Direction of incoming supply as required

Degree of protection Device In the operating controls area: IP20 (basic degree of protection)

Degree of protection Enclosures With insulating surround: IP40 With door coupling rotary handle: IP66

Degree of protection Terminations Tunnel terminal: IP10 Phase isolator and strip terminal: IP00

Other technical data (sheet catalogue) Weight Temperature dependency, Derating Effective power loss

Circuit-breakers

Rated current = rated uninterrupted current $[I_n = I_u]$ 250 A

Rated surge voltage invariability [U_{mp}] Main contacts 8000 V

Rated surge voltage invariability [U_{mp}] Auxiliary contacts 6000 V

Rated operational voltage [U_e] 690 V AC

Overvoltage category/pollution degree III/3

Rated insulation voltage [U] 690 V

Use in unearthed supply systems \Box 690 V

Switching capacity

Rated short-circuit making capacity [l_cm] 240 V [l_cm] 330 kA

Rated short-circuit making capacity [I_{cm}] 400/415 V [I_{cm}] 330 kA

Rated short-circuit making capacity [I_{cm}] 440 V 50/60 Hz [I_{cm}] 286 kA

Rated short-circuit making capacity [I_{cm}] 525 V 50/60 Hz [I_{cm}] 143 kA

Rated short-circuit making capacity [l_{cm}] 690 V 50/60 H [lc] 74 kA

Rated short-circuit breaking capacity I_{cn} [I_{cn}] lcu to IEC/EN 60947 test cycle O-t-CO [lcu] 240 V 50/60 Hz [I_{cu}] 150 kA

Rated short-circuit breaking capacity I_{cn} [I_{cn}] lcu to IEC/EN 60947 test cycle O-t-CO [lcu] 400/415 V 50/60 Hz [I_{cu}] 150 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcu to IEC/EN 60947 test cycle O-t-CO [lcu] 440 V 50/60 Hz [l_{cu}] 130 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcu to IEC/EN 60947 test cycle O-t-CO [lcu] 525 V 50/60 Hz [l_{cu}] 65 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcu to IEC/EN 60947 test cycle O-t-CO [lcu] 690 V 50/60 Hz [l_{cu}] 35 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 240 V 50/60 Hz [l_{cs}] 150 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 400/415 V 50/60 Hz [l_{cs}] 150 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 440 V 50/60 Hz [l_{cs}] 130 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO [lcs] 525 V 50/60 Hz [l_{cs}] 33 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 690 V 50/60 Hz [l_{cs}] 9 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] Maximum back-up fuse, if the expected shortcircuit currents at the installation location exceed the switching capacity of the circuit-breaker.

Rated short-time withstand current $t = 0.3 \text{ s} [I_{cw}]$ 3.3 kA

Rated short-time withstand current $t = 1 \text{ s } [I_{cw}]$ 3.3 kA

Utilization category to IEC/EN 60947-2 A

Lifespan, mechanical(of which max. 50 % trip by shunt/undervoltage release) [Operations] 15000

Lifespan, electrical AC-1 400 V 50/60 Hz [Operations] 5000 Lifespan, electrical AC-1 415 V 50/60 Hz [Operations] 5000

Lifespan, electrical AC-1 690 V 50/60 Hz [Operations] 3000

Lifespan, electrical Max. operating frequency 60 Ops/h

Total break time at short-circuit < 10 ms

Terminal capacity

Standard equipment Screw connection

Accessories required NZMB-XSVS

Optional accessories Box terminal Tunnel terminal connection on rear

Round copper conductor Box terminal Solid 2 x 16 mm²

Round copper conductor Box terminal Stranded 1 x (35 - 240) 2 x (25-120) mm²

Round copper conductor Tunnel terminal Solid 1 x 16 mm²

Round copper conductor

Tunnel terminal Stranded 1-hole 1 x (16 - 185) mm²

Round copper conductor Bolt terminal and rear-side connection Direct on the switch Solid 1 x 16 2 x 16 mm²

Round copper conductor Bolt terminal and rear-side connection Direct on the switch Stranded 1 x (25 - 240) 2 x (25 - 240) mm²

Round copper conductor Bolt terminal and rear-side connection Connection width extension Connection width extension 2 x 300 mm²

Al circular conductor Tunnel terminal Solid 1 x 16 mm²

Al circular conductor Tunnel terminal Stranded Stranded 1 x (25 - 185) ²⁾ mm²

Al circular conductor Tunnel terminal Stranded Double hole 1 x (50 - 240) 2 x (50 - 240) mm²

Al circular conductor Tunnel terminal Stranded ²⁾ Up to 240 mm² can be connected depending on the cable manufacturer.

Qu strip (number of segments x width x segment thickness) Box terminal [min.] 6 x 16 x 0.8 mm Qu strip (number of segments x width x segment thickness) Box terminal [max.] 10 x 24 x 1.0 + 5 x 24 x 1.0 (2 x) 8 x 24 x 1.0 mm

Ou strip (number of segments x width x segment thickness) Bolt terminal and rear-side connection Flat copper strip, with holes [min.] 6 x 16 x 0.8 mm

Qu strip (number of segments x width x segment thickness) Bolt terminal and rear-side connection Hat copper strip, with holes [max.] $10 \times 32 \times 1.0 + 5 \times 32 \times 1.0$ mm

Ou strip (number of segments x width x segment thickness) Bolt terminal and rear-side connection Connection width extension (2 x) 10 x 50 x 1.0 mm

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Screw connection M10

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Direct on the switch [min.] 20 x 5 mm

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Direct on the switch [max.] 30 x 10 + 30 x 5 mm

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Connection width extension Connection width extension [max.] 2 x (10 x 50) mm

Control cables 1 x (0.75 - 2.5) 2 x (0.75 - 1.5) mm²

DESIGN VERIFICATION AS PER IEC/EN 61439

Technical data for design verification

Rated operational current for specified heat dissipation [In] 250 A

Equipment heat dissipation, current-dependent [P_{vid}] 18.75 W

Operating ambient temperature min. -25 °C

Operating ambient temperature max. +70 °C

IEC/EN 61439 design verification

10.2 Strength of materials and parts 10.2.2 Corrosion resistance Meets the product standard's requirements.

10.2 Strength of materials and parts 10.2.3.1 Verification of thermal stability of enclosures Meets the product standard's requirements.

10.2 Strength of materials and parts 10.2.3.2 Verification of resistance of insulating materials to normal heat Meets the product standard's requirements.

10.2 Strength of materials and parts 10.2.3.3 Verification of resistance of insulating materials to abnormal heat and fire due to internal electric effects Meets the product standard's requirements.

10.2 Strength of materials and parts 10.2.4 Resistance to ultra-violet (UV) radiation Meets the product standard's requirements.

10.2 Strength of materials and parts 10.2.5 Lifting Does not apply, since the entire switchgear needs 10/15

to be evaluated.

10.2 Strength of materials and parts10.2.6 Mechanical impactDoes not apply, since the entire switchgear needs to be evaluated.

10.2 Strength of materials and parts10.2.7 InscriptionsMeets the product standard's requirements.

10.3 Degree of protection of ASSEVBLIES Does not apply, since the entire switchgear needs to be evaluated.

10.4 Clearances and creepage distances Meets the product standard's requirements.

10.5 Protection against electric shock Does not apply, since the entire switchgear needs to be evaluated.

10.6 Incorporation of switching devices and components Does not apply, since the entire switchgear needs to be evaluated.

10.7 Internal electrical circuits and connections Is the panel builder's responsibility.

10.8 Connections for external conductors Is the panel builder's responsibility.

10.9 Insulation properties10.9.2 Power-frequency electric strengthIs the panel builder's responsibility.

10.9 Insulation properties10.9.3 Impulse withstand voltageIs the panel builder's responsibility.

10.9 Insulation properties10.9.4 Testing of enclosures made of insulating materialIs the panel builder's responsibility.

10.10 Temperature rise

The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.

10.11 Short-circuit rating Is the panel builder's responsibility. The specifications for the switchgear must be observed.

10.12 Electromagnetic compatibility Is the panel builder's responsibility. The specifications for the switchgear must be observed.

10.13 Mechanical function The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.

TECHNICAL DATA ETIM 7.0

Low-voltage industrial components (EG000017) / Power circuit-breaker for trafo/generator/installation protection (EC000228)

Electric engineering, automation, process control engineering / Low-voltage switch technology / Circuit breaker (LV < 1 kV) / Circuit breaker for power transformer, generator and system protection (ecl@ss10.0.1-27-37-04-09 [AJZ716013])

Rated permanent current lu 250 A

Rated voltage 690 - 690 V

Rated short-circuit breaking capacity lcu at 400 V, 50 Hz 150 kA

Overload release current setting 100 - 250 A

Adjustment range short-term delayed short-circuit release 2 - 10 A

Adjustment range undelayed short-circuit release 2 - 18 A

Integrated earth fault protection No

Type of electrical connection of main circuit Other

Device construction Built-in device plug-in technique

Suitable for DIN rail (top hat rail) mounting No

DIN rail (top hat rail) mounting optional No

Number of auxiliary contacts as normally closed contact 0

Number of auxiliary contacts as normally open contact 0

Number of auxiliary contacts as change-over contact 0

With switched-off indicator No

With under voltage release No

Number of poles 3

Position of connection for main current circuit Connection at separate chassis part

Type of control element Rocker lever Complete device with protection unit Yes

Motor drive integrated No

Motor drive optional Yes

Degree of protection (IP) IP20

CHARACTERISTICS

Characteristic curve

Let-through current

Characteristic curve

Let-through energy

DIMENSIONS

Blow out area, minimum clearance to adjacent parts
 Minimum clearance to adjacent parts

			5

Imprint | Privacy Policy | Legal Disclaimer | Terms and Conditions © 2020 by Eaton Industries GmbH

15/15