

280987 NZM B1-A20	
Overview Specifi	ications Resources
	DELIVERY PROGRAM
Delivery program	DELIVERT PROGRAW
Technical data	Product range Circuit-breaker
Design verification as per IEC/EN 61439	Protective function System and cable protection
Technical data ETIM 7.0	Standard/Approval IEC
Characteristics	Installation type Fixed
Dimensions	Release system Thermomagnetic release
	Construction size NZM1
	Number of poles 3 pole

Standard equipment Box terminal

Switching capacity

400/415 V 50 Hz [l_{cu}] 25 kA

Rated current = rated uninterrupted current $[I_n = I_u]$

Rated current = rated uninterrupted current $[I_n = I_u]$ 20 A

Setting range

Overload trip [Ir] 15 - 20 A

Short-circuit releases [] $[I_m]$ Non-delayed [] $[I_i = I_n \times ...]$ 350 A fixed

Short-circuit releases []-> [I_{rm}] min. 350 A

TECHNICAL DATA

General

Standards IEC/EN 60947

Protection against direct contact Finger and back of hand proof to VDE0106 Part 100

Climatic proofing Damp heat, constant, to IEC 60068-2-78 Damp heat, cyclic, to IEC 60068-2-30 2/14 Ambient temperature Ambient temperature, storage - 40 - + 70 $^\circ\mathrm{C}$

Ambient temperature Operation -25 - +70 °C

Mechanical shock resistance (10 ms halfsinusoidal shock) according to IEC 60068-2-27 20 (half-sinusoidal shock 20 ms) g

Safe isolation to EN 61140 Between auxiliary contacts and main contacts 500 V AC $\,$

Safe isolation to EN 61140 between the auxiliary contacts 300 V AC

Mounting position

Vertical and 90° in all directions

With XFI earth-fault release:

- NZM1, N1, NZM2, N2: vertical and 90° in all directions

with plug-in unit - NZM1, N1, NZM2, N2:

vertical, 90° right/left

with withdrawable unit:

- NZIVB, N3: vertical, 90° right/left

- NZM4, N4: vertical

with remote operator:

- NZM2, N(S)2, NZM3, N(S)3, NZM4, N(S)4: vertical and 90° in all directions

Direction of incoming supply as required

Degree of protection Device In the operating controls area: IP20 (basic degree of protection)

Degree of protection

Enclosures With insulating surround: IP40 With door coupling rotary handle: IP66

Degree of protection Terminations Tunnel terminal: IP10 Phase isolator and strip terminal: IP00

Other technical data (sheet catalogue) Temperature dependency, Derating

Circuit-breakers

Rated current = rated uninterrupted current $[I_n = I_u]$ 20 A

Rated surge voltage invariability [U_{mp}] Main contacts 6000 V

Rated surge voltage invariability [U_{mp}] Auxiliary contacts 6000 V

Rated operational voltage [Ue] 440 V AC

Overvoltage category/pollution degree III/3

Rated insulation voltage [U_i] 690 V

Use in unearthed supply systems $\hfill 440~V$

Switching capacity

Rated short-circuit making capacity [I_{cm}] 240 V [I_{cm}] 63 kA

Rated short-circuit making capacity [I_{cm}] 400/415 V [I_{cm}] 53 kA

Rated short-circuit making capacity [I_{cm}] 440 V 50/60 Hz [I_{cm}] 53 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcu to IEC/EN 60947 test cycle O-t-CO [lcu] 240 V 50/60 Hz [l_{cu}] 30 kA

Rated short-circuit breaking capacity I_{cn} [I_{cn}] lcu to IEC/EN 60947 test cycle O-t-OO [lcu] 400/415 V 50/60 Hz [I_{cu}] 25 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcu to IEC/EN 60947 test cycle O-t-CO [lcu] 440 V 50/60 Hz [l_{cu}] 25 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 240 V 50/60 Hz [l_{cs}] 30 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 400/415 V 50/60 Hz [l_{cs}] 25 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 440 V 50/60 Hz [l_{cs}] 18.5 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] Maximum back-up fuse, if the expected shortcircuit currents at the installation location exceed the switching capacity of the circuit-breaker.

Utilization category to IEC/EN 60947-2 A

Lifespan, mechanical(of which max. 50 % trip by shunt/undervoltage release) [Operations] 20000

Lifespan, electrical

AC-1 400 V 50/60 Hz [Operations] 7500

Lifespan, electrical AC-1 415 V 50/60 Hz [Operations] 7500

Lifespan, electrical Max. operating frequency 120 Ops/h

Total break time at short-circuit < 10 ms

Terminal capacity

Standard equipment Box terminal

Optional accessories Screw connection Tunnel terminal connection on rear

Round copper conductor Box terminal Solid 1 x (6 - 16) 2 x (4 - 16) mm²

Round copper conductor Box terminal Stranded $1 \times (6 - 70)^{3)}$ $2 \times (4 - 25) \text{ mm}^2$

Round copper conductor Box terminal ³⁾ Up to 95 mm² can be connected depending on the cable manufacturer.

Round copper conductor Tunnel terminal Solid 1 x 16 mm²

Round copper conductor

Tunnel terminal Stranded 1-hole 1 x (25 - 95) mm²

Round copper conductor Bolt terminal and rear-side connection Direct on the switch Solid 1 x (6 - 16) 2 x (4 - 16) mm²

Round copper conductor Bolt terminal and rear-side connection Direct on the switch Stranded $1 \times (6 - 70)^{-3}$ $2 \times (4 - 25) \text{ mm}^2$

Round copper conductor Bolt terminal and rear-side connection Direct on the switch ³⁾ Up to 95 mm² can be connected depending on the cable manufacturer.

Al circular conductor Tunnel terminal Solid 1 x 16 mm²

Al circular conductor Tunnel terminal Stranded Stranded 1 x (25 - 95) mm²

Al circular conductor Bolt terminal and rear-side connection Direct on the switch Solid 1 x (10 - 16) 2 x (10 - 16) mm²

Al circular conductor Bolt terminal and rear-side connection Direct on the switch Stranded 1 x (25 - 35) 2 x (25 - 35) mm²

Ou strip (number of segments x width x segment thickness) Box terminal [min.] Ou strip (number of segments x width x segment thickness) Box terminal [max.] 9 x 9 x 0.8 mm

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Screw connection M6

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Direct on the switch [min.] 12 x 5 mm

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Direct on the switch [max.] 16 x 5 mm

Control cables 1 x (0.75 - 2.5) 2 x (0.75 - 1.5) mm²

DESIGN VERIFICATION AS PER IEC/EN 61439

Technical data for design verification

Rated operational current for specified heat dissipation $\left[I_{h}\right]$ 20 A

Equipment heat dissipation, current-dependent $[\mathrm{P}_{icl}]$ 9.82 W

Operating ambient temperature min. -25 $^\circ\mathrm{C}$

Operating ambient temperature max. +70 °C

IEC/EN 61439 design verification

10.2 Strength of materials and parts10.2.2 Corrosion resistanceMeets the product standard's requirements.

10.2 Strength of materials and parts10.2.3.1 Verification of thermal stability of enclosuresMeets the product standard's requirements.

10.2 Strength of materials and parts10.2.3.2 Verification of resistance of insulating materials to normal heatMeets the product standard's requirements.

10.2 Strength of materials and parts 10.2.3.3 Verification of resistance of insulating materials to abnormal heat and fire due to internal electric effects Meets the product standard's requirements.

10.2 Strength of materials and parts10.2.4 Resistance to ultra-violet (UV) radiationMeets the product standard's requirements.

10.2 Strength of materials and parts10.2.5 LiftingDoes not apply, since the entire switchgear needs to be evaluated.

10.2 Strength of materials and parts10.2.6 Mechanical impactDoes not apply, since the entire switchgear needs to be evaluated.

10.2 Strength of materials and parts10.2.7 InscriptionsMeets the product standard's requirements.

10.3 Degree of protection of ASSEVBLIES Does not apply, since the entire switchgear needs to be evaluated.

10.4 Clearances and creepage distances Meets the product standard's requirements. 10.5 Protection against electric shock Does not apply, since the entire switchgear needs to be evaluated.

10.6 Incorporation of switching devices and components Does not apply, since the entire switchgear needs to be evaluated.

10.7 Internal electrical circuits and connections Is the panel builder's responsibility.

10.8 Connections for external conductors Is the panel builder's responsibility.

10.9 Insulation properties10.9.2 Power-frequency electric strength Is the panel builder's responsibility.

10.9 Insulation properties10.9.3 Impulse withstand voltageIs the panel builder's responsibility.

10.9 Insulation properties10.9.4 Testing of enclosures made of insulating materialIs the panel builder's responsibility.

10.10 Temperature rise The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.

10.11 Short-circuit rating Is the panel builder's responsibility. The specifications for the switchgear must be observed.

10.12 Electromagnetic compatibility Is the panel builder's responsibility. The specifications for the switchgear must be observed.

10.13 Mechanical function The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.

TECHNICAL DATA ETIM 7.0

Low-voltage industrial components (EG000017) / Power circuit-breaker for trafo/generator/installation protection (EC000228)

Electric engineering, automation, process control engineering / Low-voltage switch technology / Grcuit breaker (LV < 1 kV) / Grcuit breaker for power transformer, generator and system protection (ecl@ss10.0.1-27-37-04-09 [AJZ716013])

Rated permanent current lu 20 A

Rated voltage 440 - 440 V

Rated short-circuit breaking capacity lcu at 400 V, 50 Hz 25 kA

Overload release current setting 15 - 20 A

Adjustment range short-term delayed short-circuit release 0 - 0 A

Adjustment range undelayed short-circuit release 350 - 350 A

Integrated earth fault protection No

Type of electrical connection of main circuit Frame clamp

Device construction Built-in device fixed built-in technique

Suitable for DIN rail (top hat rail) mounting No

DIN rail (top hat rail) mounting optional Yes

Number of auxiliary contacts as normally closed contact 0

Number of auxiliary contacts as normally open contact 0

Number of auxiliary contacts as change-over contact 0

With switched-off indicator No

With under voltage release No

Number of poles 3

Position of connection for main current circuit Front side

Type of control element Rocker lever

Complete device with protection unit Yes

Motor drive integrated No

Motor drive optional No

Degree of protection (IP) IP20

CHARACTERISTICS

Cha	racte	ristic curve
n.		19. m
-		
1		, i

Characteristic curve

Let-through current

Characteristic curve

•H	+++		ur i	
· []				
-11		1111/		
18		1	1	-
'H		AF	-	
"H		911	HT	
10	1			
1	7			
- 1				

Let-through energy

DIMENSIONS

 $\hfill\square$ Blow out area, minimum clearance to adjacent parts

Imprint $\ | \ Privacy Policy \ | \ Legal Disclaimer \ | \ Terms and Conditions <math display="inline">@2021$ by Eaton Industries GmbH