

281249 NZM N1-4-A32

Overview

Specifications

Resources

DELIVERY PROGRAM

Delivery program

Product range Orcuit-breaker

Technical data

Design verification as

Protective function System and cable protection

per IEC/EN 61439

Standard/Approval

Technical data ETIM 7.0

Installation type Fixed

Characteristics

Release system

Thermomagnetic release

Dimensions

Construction size NZM1

Description

Set value in neutral conductor is synchronous with set value Ir of main pole.

Number of poles 4 pole Standard equipment Box terminal **Switching capacity** 400/415 V 50 Hz [l_{cu}] 50 kA Rated current = rated uninterrupted current $[I_n = I_u]$ Rated current = rated uninterrupted current $[I_n = I_u]$ 32 A Neutral conductor [% of phase conductor] 100 % **Setting range** Overload trip 古[4] 25 - 32 A Overload trip $\text{Main pole} \qquad \qquad [I_r\,]$ 25 - 32 A Short-circuit releases $| \mathbf{l}_{rm} |$ Non-delayed $[I_i = I_n \times ...]$ 350 A fixed

TECHNICAL DATA

Short-circuit releases [I_{rm}]

min. 350 A

General

Standards IEC/EN 60947

Protection against direct contact Finger and back of hand proof to VDE 0106 Part 100

Olimatic proofing Damp heat, constant, to IEC 60068-2-78 Damp heat, cyclic, to IEC 60068-2-30

Ambient temperature Ambient temperature, storage - 40 - + 70 °C

Ambient temperature Operation -25 - +70 °C

Mechanical shock resistance (10 ms half-sinusoidal shock) according to IEC 60068-2-27 20 (half-sinusoidal shock 20 ms) g

Safe isolation to EN 61140 Between auxiliary contacts and main contacts 500 V AC

Safe isolation to BN 61140 between the auxiliary contacts 300 V AC

Mounting position

Vertical and 90° in all directions

With XFI earth-fault release:

- NZM1, N1, NZM2, N2: vertical and 90° in all directions

with plug-in unit

- NZM1, N1, NZM2, N2: vertical, 90° right/left

with withdrawable unit:

- NZM3, N3: vertical, 90° right/left
- NZM4, N4: vertical with remote operator:

- NZM2, N(S)2, NZM3, N(S)3, NZM4, N(S)4: vertical and 90° in all directions

Direction of incoming supply as required

Degree of protection Device In the operating controls area: IP20 (basic degree of protection)

Degree of protection
Enclosures
With insulating surround: IP40
With door coupling rotary handle: IP66

Degree of protection
Terminations
Tunnel terminal: IP10
Phase isolator and strip terminal: IP00

Other technical data (sheet catalogue) Temperature dependency, Derating

Circuit-breakers

Rated current = rated uninterrupted current [$I_n = I_u$] 32 A

Rated surge voltage invariability [U_{mp}] Main contacts 6000 V

Rated surge voltage invariability [U_{mp}] Auxiliary contacts $6000\ V$

Rated operational voltage $[U_e]$ 690 V AC

Overvoltage category/pollution degree III/3

Rated insulation voltage [U_i] 690 V

Use in unearthed supply systems \square 690 V

Switching capacity

Rated short-circuit making capacity [l_{cm}] 240 V [l_{cm}] 187 kA

Rated short-circuit making capacity [l_{cm}] 400/415 V [l_{cm}] 105 kA

Rated short-circuit making capacity [l_{cm}] 440 V 50/60 Hz [l_{cm}] 74 kA

Rated short-circuit making capacity [l_{cm}] 525 V 50/60 Hz [l_{cm}] 40 kA

Rated short-circuit making capacity [l_{cm}] 690 V 50/60 H [l_{cm}] 17 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcu to IEC/EN 60947 test cycle O-t-CO [lcu] 240 V 50/60 Hz [l_{cu}] 85 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcu to IEC/EN 60947 test cycle O-t-CO [lcu] 400/415 V 50/60 Hz [l_{cu}] 50 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcu to IEC/EN 60947 test cycle O-t-CO [lcu] 440 V 50/60 Hz [l_{cu}] 35 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcu to IEC/EN 60947 test cycle O-t-CO [lcu] 525 V 50/60 Hz [l_{cu}] 20 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcu to IEC/EN 60947 test cycle O-t-CO [lcu]

 $690 \text{ V } 50/60 \text{ Hz } [l_{cu}]$ 10 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 240 V 50/60 Hz [l_{cs}] 85 kA

Rated short-circuit breaking capacity $l_{\rm cn}$ [$l_{\rm cn}$] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 400/415 V 50/60 Hz [$l_{\rm cs}$] 50 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 440 V 50/60 Hz [l_{cs}] 35 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 525 V 50/60 Hz [l_{cs}] 10 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 690 V 50/60 Hz [l_{cs}] 7.5 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit-breaker.

Utilization category to IEC/EN 60947-2 A

Lifespan, mechanical(of which max. 50 % trip by shunt/undervoltage release) [Operations] 20000

Lifespan, electrical AC-1 400 V 50/60 Hz [Operations] 10000

Lifespan, electrical AC-1 415 V 50/60 Hz [Operations] 10000 Lifespan, electrical AC-1 690 V 50/60 Hz [Operations] 7500

Lifespan, electrical Max. operating frequency 120 Ops/h

Total break time at short-circuit < 10 ms

Terminal capacity

Standard equipment Box terminal

Optional accessories Screw connection Tunnel terminal connection on rear

Round copper conductor Box terminal Solid 1 x (10 - 16) 2 x (6 - 16) mm²

Round copper conductor Box terminal Stranded 1 x (10 - 70) ³⁾ 2 x (6-25) mm²

Round copper conductor Box terminal ³⁾ Up to 95 mm² can be connected depending on the cable manufacturer.

Round copper conductor Tunnel terminal Solid 1 x 16 mm²

Round copper conductor Tunnel terminal Stranded 1-hole 1 x (25 - 95) mm² Round copper conductor
Bolt terminal and rear-side connection
Direct on the switch
Solid
1 x (10 - 16)
2 x (6 - 16) mm²

Round copper conductor
Bolt terminal and rear-side connection
Direct on the switch
Stranded
1 x (10 - 70) ³⁾
2 x 25 mm²

Round copper conductor

Bolt terminal and rear-side connection

Direct on the switch

3) Up to 95 mm² can be connected depending on the cable manufacturer.

Al circular conductor Tunnel terminal Solid 1 x 16 mm²

Al circular conductor Tunnel terminal Stranded Stranded 1 x (25 - 95) mm²

Al circular conductor
Bolt terminal and rear-side connection
Direct on the switch
Solid
1 x (10 - 16)
2 x (10 - 16) mm²

Al circular conductor
Bolt terminal and rear-side connection
Direct on the switch
Stranded
1 x (25 - 35)
2 x (25 - 35) mm²

Ou strip (number of segments x width x segment thickness)

Box terminal [min.]

2 x 9 x 0.8 mm

Ou strip (number of segments x width x segment

thickness)
Box terminal [max.]
9 x 9 x 0.8 mm

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Screw connection M6

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Direct on the switch [min.] 12 x 5 mm

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Direct on the switch [max.] 16 x 5 mm

Control cables 1 x (0.75 - 2.5) 2 x (0.75 - 1.5) mm²

DESIGN VERIFICATION AS PER IEC/EN 61439

Technical data for design verification

Rated operational current for specified heat dissipation $[I_n]$ 32 A

Equipment heat dissipation, current-dependent $[P_{\text{id}}]$ 9.31 W

Operating ambient temperature min. -25 °C

Operating ambient temperature max. +70 $^{\circ}$ C

IEC/EN 61439 design verification

10.2 Strength of materials and parts

10.2.2 Corrosion resistance Weets the product standard's requirements.

10.2 Strength of materials and parts 10.2.3.1 Verification of thermal stability of enclosures Meets the product standard's requirements.

10.2 Strength of materials and parts10.2.3.2 Verification of resistance of insulating materials to normal heatMeets the product standard's requirements.

10.2 Strength of materials and parts
10.2.3.3 Verification of resistance of insulating
materials to abnormal heat and fire due to internal
electric effects
Meets the product standard's requirements.

10.2 Strength of materials and parts 10.2.4 Resistance to ultra-violet (UV) radiation Meets the product standard's requirements.

10.2 Strength of materials and parts10.2.5 LiftingDoes not apply, since the entire switchgear needs to be evaluated.

10.2 Strength of materials and parts10.2.6 Mechanical impactDoes not apply, since the entire switchgear needs to be evaluated.

10.2 Strength of materials and parts10.2.7 InscriptionsMeets the product standard's requirements.

10.3 Degree of protection of ASSEVBLIES

Does not apply, since the entire switchgear needs to be evaluated.

10.4 Clearances and creepage distances Meets the product standard's requirements.

10.5 Protection against electric shock Does not apply, since the entire switchgear needs to be evaluated. components

Does not apply, since the entire switchgear needs to be evaluated.

10.7 Internal electrical circuits and connections Is the panel builder's responsibility.

10.8 Connections for external conductors Is the panel builder's responsibility.

10.9 Insulation properties 10.9.2 Power-frequency electric strength Is the panel builder's responsibility.

10.9 Insulation properties10.9.3 Impulse withstand voltageIs the panel builder's responsibility.

10.9 Insulation properties10.9.4 Testing of enclosures made of insulating materialIs the panel builder's responsibility.

10.10 Temperature rise
The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.

10.11 Short-circuit rating Is the panel builder's responsibility. The specifications for the switchgear must be observed.

10.12 Electromagnetic compatibility Is the panel builder's responsibility. The specifications for the switchgear must be observed.

10.13 Mechanical function
The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.

TECHNICAL DATA ETIM 7.0

protection (EC000228)

Bectric engineering, automation, process control engineering / Low-voltage switch technology / Orcuit breaker (LV < 1 kV) / Orcuit breaker for power transformer, generator and system protection (ecl@ss10.0.1-27-37-04-09 [AJZ716013])

Rated permanent current lu 32 A

Rated voltage 690 - 690 V

Rated short-circuit breaking capacity lcu at 400 V, 50 Hz $\,$ 50 kA $\,$

Overload release current setting 25 - 32 A

Adjustment range short-term delayed short-circuit release 0 - 0 A

Adjustment range undelayed short-circuit release 350 - 350 A

Integrated earth fault protection No

Type of electrical connection of main circuit Frame clamp

Device construction
Built-in device fixed built-in technique

Suitable for DIN rail (top hat rail) mounting No.

DIN rail (top hat rail) mounting optional Yes

Number of auxiliary contacts as normally closed contact

0

Number of auxiliary contacts as normally open Number of auxiliary contacts as change-over contact With switched-off indicator No With under voltage release Number of poles 4 Position of connection for main current circuit Front side Type of control element Rocker lever Complete device with protection unit Yes Motor drive integrated Motor drive optional No Degree of protection (IP)

CHARACTERISTICS

Characteristic curve

Characteristic curve

Let-through current

Characteristic curve

Let-through energy

DIMENSIONS

 $\hfill \square$ Blow out area, minimum clearance to adjacent parts

Imprint | Privacy Policy | Legal Disclaimer | Terms and Conditions © 2022 by Eaton Industries GmbH