265996 NZM H4-4-VE1600	
Overview Specific	cations Resources
Delivery program	DELIVERY PROGRAM
Technical data	Product range Circuit-breaker
Design verification as per IEC/EN 61439	Protective function Systems, cable, selectivity and generator protection
Technical data ETIM7.0	Standard/Approval IEC
Characteristics	Installation type Fixed
Dimensions	Release system Electronic release
	Construction size NZM4
	Description Rms. value measurement and "thermal memory"

Adjustable time delay setting to overcome current peaks tr at 6 x lr also infinity (without overload releases) Adjustable delay time tsd i²t constant function: switchable Set value in neutral conductor is synchronous with set value lr of main pole.

Number of poles 4 pole

Standard equipment Screw connection

Switching capacity

400/415 V 50 Hz [l_{cu}] 85 kA

Rated current = rated uninterrupted current $[I_n = I_u]$

Rated current = rated uninterrupted current $[I_n = I_u]$ 1600 A

Neutral conductor [% of phase conductor] 100 %

Setting range

Overload trip [l_r] 800 - 1600 A

Overload trip Main pole [], [], 800 - 1600 A

Short-circuit releases $I \rightarrow [l_m]$ Non-delayed $I \rightarrow [l_i = l_n \times ...]$ 2 - 12

Short-circuit releases $I > [I_{rm}]$ Delayed $||_{Sd} = I_r \times ...]$ 2 - 10

TECHNICAL DATA

General

Standards IEC/EN 60947

Protection against direct contact Finger and back of hand proof to VDE0106 Part 100

Climatic proofing Damp heat, constant, to IEC 60068-2-78 Damp heat, cyclic, to IEC 60068-2-30

Ambient temperature Ambient temperature, storage - 40 - + 70 °C

Ambient temperature Operation -25 - +70 °C

Mechanical shock resistance (10 ms halfsinusoidal shock) according to IEC 60068-2-27 15 (half-sinusoidal shock 11 ms) g

Safe isolation to EN 61140 Between auxiliary contacts and main contacts 500 V AC

Safe isolation to EN 61140 between the auxiliary contacts 300 V AC

Mounting position

Vertical and 90° in all directions

With XFI earth-fault release:

- NZM1, N1, NZM2, N2: vertical and 90° in all directions with plug-in unit

- NZM1, N1, NZM2, N2: vertical, 90° right/left

with withdrawable unit:

- NZNB, N3: vertical, 90° right/left

- NZM4, N4: vertical

with remote operator:

- NZM2, N(S)2, NZM3, N(S)3, NZM4, N(S)4: vertical and 90° in all directions

Direction of incoming supply as required

Degree of protection Device In the operating controls area: IP20 (basic degree of protection)

Degree of protection Enclosures With insulating surround: IP40 With door coupling rotary handle: IP66

Degree of protection Terminations Tunnel terminal: IP10 Phase isolator and strip terminal: IP00

Other technical data (sheet catalogue) Temperature dependency, Derating

Circuit-breakers

Rated current = rated uninterrupted current $[I_n = I_u]$ 1600 A

Rated surge voltage invariability [U_{mp}] Main contacts 8000 V

Rated surge voltage invariability [U_{mp}] Auxiliary contacts 6000 V

Rated operational voltage [Ue] 690 V AC

Overvoltage category/pollution degree III/3

Rated insulation voltage [U_i] 1000 V

Use in unearthed supply systems $\hfill\square$ 525 V

Switching capacity

Rated short-circuit making capacity [I_{cm}] 240 V [I_{cm}] 275 kA

Rated short-circuit making capacity [I_{cm}] 400/415 V [I_{cm}] 187 kA

Rated short-circuit making capacity [I_{cm}] 440 V 50/60 Hz [I_{cm}] 187 kA

Rated short-circuit making capacity [I_{cm}] 525 V 50/60 Hz [I_{cm}] 143 kA

Rated short-circuit making capacity [I_{cm}] 690 V 50/60 H [Ic] 100 kA

Rated short-circuit breaking capacity I_{cn} [I_{cn}] lcu to IEC/EN 60947 test cycle O-t-CO [lcu] 240 V 50/60 Hz [I_{cu}] 125 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcu to IEC/EN 60947 test cycle O-t-CO [Icu] 400/415 V 50/60 Hz [l_{cu}] 85 kA

Rated short-circuit breaking capacity I_{cn} [I_{cn}] lcu to IEC/EN 60947 test cycle O-t-CO [lcu] 440 V 50/60 Hz [I_{cu}] 85 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcu to IEC/EN 60947 test cycle O-t-CO [lcu] 525 V 50/60 Hz [l_{cu}] 65 kA Rated short-circuit breaking capacity I_{cn} [I_{cn}] lcu to IEC/EN 60947 test cycle O-t-CO [lcu] 690 V 50/60 Hz [I_{cu}] 50 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 240 V 50/60 Hz [l_{cs}] 63 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 400/415 V 50/60 Hz [l_{cs}] 50 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 440 V 50/60 Hz [l_{cs}] 50 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 525 V 50/60 Hz [l_{cs}] 50 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] lcs to IEC/EN 60947 test cycle O-t-CO-t-CO [lcs] 690 V 50/60 Hz [l_{cs}] 37 kA

Rated short-circuit breaking capacity l_{cn} [l_{cn}] Maximum back-up fuse, if the expected shortcircuit currents at the installation location exceed the switching capacity of the circuit-breaker.

Rated short-time withstand current $t = 0.3 \text{ s} [l_{cw}]$ 19.2 kA

Rated short-time withstand current $t = 1 \text{ s } [I_{cw}]$ 19.2 kA

Utilization category to IEC/EN 60947-2 B

Lifespan, mechanical(of which max. 50 % trip by shunt/undervoltage release) [Operations] 10000

Lifespan, electrical AC-1 400 V 50/60 Hz [Operations] 3000

Lifespan, electrical AC-1 415 V 50/60 Hz [Operations] 3000

Lifespan, electrical AC-1 690 V 50/60 Hz [Operations] 2000

Lifespan, electrical AC--3 400 V 50/60 Hz [Operations] 2000

Lifespan, electrical AC--3 415 V 50/60 Hz [Operations] 2000

Lifespan, electrical AC--3 690 V 50/60 Hz [Operations] 1000

Lifespan, electrical Max. operating frequency 60 Ops/h

Total break time at short-circuit $< 25 \square 415$ V; < 35 > 415 V ms

Terminal capacity

Standard equipment Screw connection

Optional accessories Tunnel terminal connection on rear Strip terminal Round copper conductor Tunnel terminal Stranded 4-hole 4 x (50 - 240) mm²

Round copper conductor Bolt terminal and rear-side connection Direct on the switch Stranded 1 x (120 - 185) 4 x (50 - 185) mm²

Round copper conductor Bolt terminal and rear-side connection Module plate Single hole [min.] 1 x (120 - 300) mm²

Round copper conductor Bolt terminal and rear-side connection Module plate Single hole [max.] 2 x (95 - 300) mm²

Round copper conductor Bolt terminal and rear-side connection Module plate Double hole [min.] 2 x (95 - 185) mm²

Round copper conductor Bolt terminal and rear-side connection Module plate Double hole [max.] 4 x (35 - 185) mm²

Round copper conductor Bolt terminal and rear-side connection Connection width extension Onnection width extension 4 x 300 6 x (95 - 240) mm²

Al circular conductor Tunnel terminal Stranded 4-hole 4 x (50 - 240) mm²

Al circular conductor Bolt terminal and rear-side connection Module plate Single hole [min.] 1 x (185 - 240) mm²

Al circular conductor Bolt terminal and rear-side connection Module plate Single hole [max.] 2 x (70 - 185) mm²

Al circular conductor Bolt terminal and rear-side connection Module plate Double hole 4 x 50 mm²

Al circular conductor Bolt terminal and rear-side connection Connection width extension Connection width extension 2 x 240 6 x (70 - 240) mm²

Ou strip (number of segments x width x segment thickness) Hat conductor terminal [min.] 6 x 16 x 0.8 mm

Ou strip (number of segments x width x segment thickness) Flat conductor terminal [max.] (2 x) 10 x 32 x 1.0 mm

Ou strip (number of segments x width x segment thickness) Module plate Single hole (2 x) 10 x 50 x 1.0 mm

Ou strip (number of segments x width x segment thickness) Bolt terminal and rear-side connection Flat copper strip, with holes [min.] 5 x 25 x 1.0 mm

Ou strip (number of segments x width x segment thickness) Bolt terminal and rear-side connection Flat copper strip, with holes [max.] (2 x) 10 x 50 x 1.0 mm

Ou strip (number of segments x width x segment $\frac{9}{16}$

thickness) Bolt terminal and rear-side connection Connection width extension $(2 \times)$ 10 x 80 x 1.0 mm

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Screw connection M10

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Direct on the switch [min.] 25 x 5 mm

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Direct on the switch [max.] $2 \times (50 \times 10)$ mm

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Module plate Single hole [min.] 25 x 5 mm

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Module plate Single hole [max.] 2 x (50 x 10) mm

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Module plate Double hole 2 x (50 x 10) mm

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Connection width extension Connection width extension [min.] 60 x 10 mm

Copper busbar (width x thickness) [mm] Bolt terminal and rear-side connection Connection width extension Connection width extension [max.] 2 x (80 x 10) mm

Control cables

1 x (0.75 - 2.5) 2 x (0.75 - 1.5) mm²

DESIGN VERIFICATION AS PER IEC/EN 61439

Technical data for design verification

Rated operational current for specified heat dissipation $[I_n]$ 1600 A

Equipment heat dissipation, current-dependent $[P_{id}] \\ 284 \ \text{W}$

Operating ambient temperature min. -25 °C

Operating ambient temperature max. +70 °C

IEC/EN 61439 design verification

10.2 Strength of materials and parts10.2.2 Corrosion resistanceMeets the product standard's requirements.

10.2 Strength of materials and parts10.2.3.1 Verification of thermal stability of enclosuresMeets the product standard's requirements.

10.2 Strength of materials and parts10.2.3.2 Verification of resistance of insulating materials to normal heatMeets the product standard's requirements.

10.2 Strength of materials and parts 10.2.3.3 Verification of resistance of insulating materials to abnormal heat and fire due to internal electric effects Meets the product standard's requirements.

10.2 Strength of materials and parts

10.2.4 Resistance to ultra-violet (UV) radiation Meets the product standard's requirements.

10.2 Strength of materials and parts10.2.5 LiftingDoes not apply, since the entire switchgear needs to be evaluated.

10.2 Strength of materials and parts10.2.6 Mechanical impactDoes not apply, since the entire switchgear needs to be evaluated.

10.2 Strength of materials and parts10.2.7 InscriptionsMeets the product standard's requirements.

10.3 Degree of protection of ASSEVBLIES Does not apply, since the entire switchgear needs to be evaluated.

10.4 Clearances and creepage distances Meets the product standard's requirements.

10.5 Protection against electric shock Does not apply, since the entire switchgear needs to be evaluated.

10.6 Incorporation of switching devices and components Does not apply, since the entire switchgear needs to be evaluated.

10.7 Internal electrical circuits and connections Is the panel builder's responsibility.

10.8 Connections for external conductors Is the panel builder's responsibility.

10.9 Insulation properties10.9.2 Power-frequency electric strength Is the panel builder's responsibility.

10.9 Insulation properties10.9.3 Impulse withstand voltageIs the panel builder's responsibility.

10.9 Insulation properties10.9.4 Testing of enclosures made of insulating materialIs the panel builder's responsibility.

10.10 Temperature rise The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.

10.11 Short-circuit rating Is the panel builder's responsibility. The specifications for the switchgear must be observed.

10.12 Electromagnetic compatibility Is the panel builder's responsibility. The specifications for the switchgear must be observed.

10.13 Mechanical function The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.

TECHNICAL DATA ETIM 7.0

Low-voltage industrial components (EG000017) / Power circuit-breaker for trafo/generator/installation protection (EC000228)

 $\begin{array}{l} \mbox{Bectric engineering, automation, process control engineering / Low-voltage switch technology / Circuit breaker (LV < 1 kV) / Circuit breaker for power transformer, generator and system protection (ecl@ss10.0.1-27-37-04-09 [AJZ716013]) \end{array}$

Rated permanent current lu 1600 A

Rated voltage 690 - 690 V

Rated short-circuit breaking capacity Icu at 400 V, 50 Hz 85 kA Overload release current setting 800 - 1600 A

Adjustment range short-term delayed short-circuit release 1600 - 16000 A

Adjustment range undelayed short-circuit release 3200 - 19200 A

Integrated earth fault protection No

Type of electrical connection of main circuit Screw connection

Device construction Built-in device fixed built-in technique

Suitable for DIN rail (top hat rail) mounting No

DIN rail (top hat rail) mounting optional No

Number of auxiliary contacts as normally closed contact 0

Number of auxiliary contacts as normally open contact 0

Number of auxiliary contacts as change-over contact 0

With switched-off indicator No

With under voltage release No

Number of poles

Position of connection for main current circuit Front side

Type of control element Rocker lever

Complete device with protection unit Yes

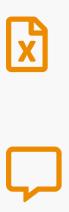
Motor drive integrated No

Motor drive optional Yes

Degree of protection (IP) IP20

CHARACTERISTICS

Characteristic curve


Characteristic curve

DIMENSIONS

□ Blow out area, minimum clearance to adjacent parts Ui ≤ 690 V: 100 mm Ui ≤ 1500 V: 200 mm □ Minimum clearance to adjacent parts Ui ≤ 1000 V: 15 mm Ui ≤ 1500 V: 70 mm

Imprint | Privacy Policy | Legal Disclaimer | Terms and Conditions © 2021 by Eaton Industries GmbH