

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

Cooker guard mKomfy Hybrid 25R

The Norwegian EPD Foundation

Owner of the declaration:

CTM Lyng AS

Product

Cooker guard mKomfy Hybrid 25R

Declared unit:

1 pcs

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019, EN 50693:2019 and PCR EPD Italy 007 serves as core PCR PCR EPD Italy 012 - Electronic and electrical products and

systems - Switches

Program operator:

The Norwegian EPD Foundation

Declaration number:

NEPD-9269-8855

Registration number:

NEPD-9269-8855

Issue date: 03.03.2025

Valid to: 03.03.2030

EPD software:

LCAno EPD generator ID: 349743

General information

Product

Cooker guard mKomfy Hybrid 25R

Program operator:

The Norwegian EPD Foundation
Post Box 5250 Majorstuen, 0303 Oslo, Norway

Phone: +47 977 22 020 web: www.epd-norge.no

Declaration number:

NEPD-9269-8855

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019, EN 50693:2019 and PCR EPD Italy 007 serves as core PCR

PCR EPD Italy 012 - Electronic and electrical products and systems - Switches

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 pcs Cooker guard mKomfy Hybrid 25R

Declared unit with option:

A1,A2,A3,A4,A5,B6,C1,C2,C3,C4,D

Functional unit:

1 pc of cooker guard, installed and used to protect a kitchen stove against fire hazards, during a service life of 12 years, including waste treatment at end-of-life.

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Owner of the declaration:

CTM Lyng AS Contact person: Vidar Gangstad Phone: +47 40006023 e-mail: vidar@ctmlyng.no

Manufacturer:

CTM Lyng AS Verkstedveien 19 7125 Vanvikan, Norway

Place of production:

CTM Lyng production site Vanvikan (Norway) Verkstedveien 19 7125 Vanvikan, Norway

Management system:

NS-EN ISO 9001:2015

Organisation no:

936285244

Issue date:

03.03.2025

Valid to:

03.03.2030

Year of study:

2023

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Vidar Gangstad - CTM Lyng AS

Reviewer of company-specific input data and EPD: Ståle Sund - CTM Lyng AS

Approved:

Håkon Hauan

Managing Director of EPD-Norway

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools. Approval number: NEPDT57.

Third party verifier:

Elisabet Amat, GREENIZE projects

(no signature required)

Product

Product description:

Cooker Guard with wireless sensor for ceiling or hood/extractor

Product specification

mKomfy Hybrid is a cooker guard for ceiling or hood/extractor mounting 70-210 cm over hob.

It has additional safety features and possibility of connecting additional equipment.

The sensor can be used with batteries (3xAA) or external power supply (not included).

	` ,	1 117
Materials	kg	%
Electronic - Battery alkaline	0,07	17,00
Electronic - Cable	0,09	21,49
Electronic - Capacitor	0,00	0,74
Electronic - Diode	0,00	0,09
Electronic - Inductor	0,00	0,58
Electronic - Integrated circuit	0,00	0,42
Electronic - LED chip	0,00	0,01
Electronic - Printed wiring board	0,03	6,64
Electronic - Resistor	0,00	0,19
Electronic - Switch	0,00	0,22
Electronic - Transistor	0,00	0,01
Electronic - Unspecified	0,02	5,07
Plastic - Polyethylene (LDPE)	0,00	0,04
Plastic compound - PC and ABS	0,04	10,91
Electronic - Solder material	0,00	0,03
Metal - Copper	0,01	1,91
Metal - Stainless steel	0,00	0,71
Metal - Steel	0,00	1,11
Tape	0,00	0,30
Plastic - Acrylonitrile butadiene styrene (ABS)	0,12	28,59
Plastic - Polycarbonate (PC)	0,02	3,96
Total	0,41	100,00
Packaging	kg	%
Packaging - Cardboard	0,04	51,13
Packaging - Paper	0,04	47,99
Packaging - Plastic	0,00	0,87
Total incl. packaging	0,50	100,00

Technical data:

Link to the CE Declaration and product data on our website: https://ctmlyng.no/produkter/komfyrvakt-mkomfy-hybrid-25r/

Market:

Norway.

Reference service life, product

12 years. Estimated based on the characteristics of the product and the intended application.

Reference service life, building or construction works

60 years. Standard service life for buildings according to the PCR Part A of EPD Norway.

LCA: Calculation rules

Declared unit:

1 pcs Cooker guard mKomfy Hybrid 25R

Cut-off criteria:

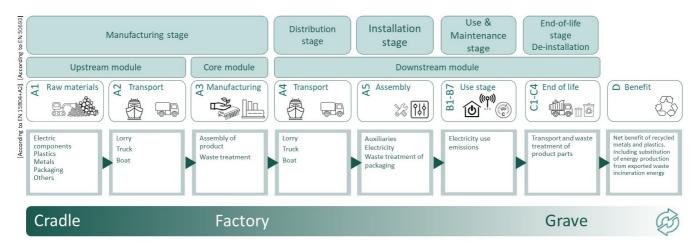
All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

Allocation

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.


Materials	Source	Data quality	Year
Electronic - Battery alkaline	Olivetti et al. (2011) + ecoinvent 3.6	Scientific literature + database	2019
Electronic - Cable	ecoinvent 3.6	Database	2019
Electronic - Capacitor	ecoinvent 3.6	Database	2019
Electronic - Diode	ecoinvent 3.6	Database	2019
Electronic - Inductor	ecoinvent 3.6	Database	2019
Electronic - Integrated circuit	ecoinvent 3.6	Database	2019
Electronic - LED chip	Scholand et al. (2012) + Ecoinvent 3.6	Scientific literature + database	2017
Electronic - Printed wiring board	Modified ecoinvent 3.6	Database	2019
Electronic - Resistor	ecoinvent 3.6	Database	2019
Electronic - Solder material	ecoinvent 3.6	Database	2019
Electronic - Switch	ecoinvent 3.6	Database	2019
Electronic - Transistor	ecoinvent 3.6	Database	2019
Electronic - Unspecified	ecoinvent 3.6	Database	2019
Metal - Copper	ecoinvent 3.6	Database	2019
Metal - Stainless steel	ecoinvent 3.6	Database	2019
Metal - Steel	ecoinvent 3.6	Database	2019
Packaging - Cardboard	ecoinvent 3.6	Database	2019
Packaging - Paper	ecoinvent 3.6	Database	2019
Packaging - Plastic	ecoinvent 3.6	Database	2019
Plastic - Acrylonitrile butadiene styrene (ABS)	ecoinvent 3.6	Database	2019
Plastic - Polycarbonate (PC)	ecoinvent 3.6	Database	2019
Plastic - Polyethylene (LDPE)	ecoinvent 3.6	Database	2019
Plastic compound - PC and ABS	ecoinvent 3.6	Database	2019
Tape	ecoinvent 3.6	Database	2019

System boundaries (X=included, MND=module not declared, MNR=module not relevant)

P	roduct stag	je	Construction installation stage					Use stage				End of li	ife stage		Beyond the system boundaries	
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery- Recycling-potential
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Χ	X	Χ	Х	Х	MND	MND	MND	MND	MND	Χ	MND	X	Χ	Χ	Χ	X

System boundary:

Additional technical information:

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD.

Module A4 = In A4, an average transport distance from the production site in Vanvikan to the warehouses we deliver to was included. This transport consist of 14 km by ferry and 516 km by truck. An average distance of 300 km by truck was also added as additional transport to market

Modules A5 = installation is done by manual labour. The use of portable electrical devices such as drills usually have low energy requirements falling under the cut-off criterion of 1% and are therefore neglected (especially for small retail devices). No product scraps are generated during installation, but the end-of-life treatment of packaging is systematically accounted for in this module.

Module B6 = The operational energy use of the switch is calculated based on the methodology provided in the PCR EPD Italy 012 Part B for switches. To calculate the electricity use of the stove guard, the following scenario parameters have been applied:

- Power consumed (Puse) = 2.99 watt
- Reference service life (RSL) = 12 years
- Number of hours in a year = 8760 hours (according to section 4.2.3.5 of the PCR)
- Operating time coefficient (a) = 100 percent (according to section 4.2.3.5 of the PCR)
- Reference current = 100% (according to section 4.2.3.5 of the PCR used to calculate Puse)

In our calculation, we have considered that the product draws current continuously, and therefore, we have used a reference current value of 100% in the calculation (instead of 50%). This represents the total load that the product imposes on the system during constant operation. We include 3 pieces of AA batteries with the product, and have therefore also added the energy they deliver: Capacity 2.6 Ah \times 3 pcs \times Voltage 1.5 V / 1000 = Energy 0.0117 (kWh).

Module C1 = De-installation is done by manual labour. The use of portable electrical devices such as drills usually have low energy requirements falling under the cut-off criterion of 1% and are therefore neglected (especially for small retail devices).

Module C2 = Transport from the installation site to the nearest waste treatment facility is based on an average distance of 300 km.

Modules C3 and C4 = Waste treatment of the product follows the default values provided in EN 50693, Product Category Rules for life cycle assessments of electronic and electrical products and systems, table G.4. This table specified how different types of raw materials used in A1 will likely be treated during the end-of-life of the product. Waste treatments in C3 include material recycling and incineration with energy recovery and fly ash extraction. Disposal in C4 consist of landfilling of different waste fractions and of ashes.

Module D = The recyclability of metals, plastics, and electronic components allows the producers a credit for the net scrap that is produced at the end of a product's life. The benefits from recycling of net scrap are described in formula from EN 15804:2012+A2:2019. Substitution of heat and electricity generated by the incineration with energy recovery of plastic insulation and other parts is also calculated in module D.

Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 4 (km) - Europe	36,7 %	300	0,044	l/tkm	13,20
Assembly (A5)	Unit	Value			
Waste, packaging, corrugated board box, to average treatment - A5 including transport (kg)	kg	0,044			
Waste, packaging, plastic film (LDPE), to average treatment - A5 including transport (kg)	kg	0,00076			
Waste, packaging, paper printed, to average treatment - A5 including transport (kg)	kg	0,041			
Operational energy (B6)	Unit	Value			
Electricity, Norway (kWh)	kWh/DU	314,31			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 5 (km) - Europe	36,7 %	300	0,044	l/tkm	13,20

Waste processing (C3)	Unit	Value	
Waste treatment per kg used electronic plug connector, manual seperation (kg)	kg	0,081	
Waste treatment of plastic mixture, incineration with energy recovery and fly ash extraction (kg)	kg	0,11	
Steel to recycling (kg)	kg	0,011	
Copper to recycling (kg)	kg	0,0074	
Waste treatment per kg used PWB, shredding and separation - C3 (kg)	kg	0,057	
Waste treatment per kg electronics scrap from PWB, with components, recycling of metals C3 (kg)	kg	0,028	
Waste treatment per kg used electronic cable, manual seperation (kg)	kg	0,0070	
Waste treatment of polyethylene (PE), incineration with energy recovery and fly ash extraction (kg)	kg	0,000075	
Acrylonitrile butadiene styrene (ABS) to recycling	kg	0,023	

Disposal (C4)	Unit	Value		
Landfilling of ashes from incineration of Plastic mixture, process per kg ashes and residues (kg)	kg	0,0040		
Landfilling of plastic mixture (kg)	kg	0,11		
Landfilling of steel (kg)	kg	0,0028		
Landfilling of copper (kg)	kg	0,0049		
Landfilling of hazardous waste (kg)	kg	0,098		
Landfilling of ashes from incineration of Polyethylene (PE), process per kg ashes and residues (kg)	kg	0,0000026		

Benefits and loads beyond the system boundaries (D)	Unit	Value		
Substitution of electricity, in Norway (MJ)	MJ	0,17		
Substitution of thermal energy, district heating, in Norway (MJ)	MJ	2,70		
Substitution of primary steel with net scrap (kg)	kg	0,0062		
Substitution of primary copper with net scrap (kg)	kg	0,0036		
Substitution of primary metals with net scrap from PWB, with components (kg)	kg	0,0084		
Substitution of acrylonitrile butadiene styrene, ABS, granulate (kg)	kg	0,023		

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Environme	ental impact								
	Indicator	_	Unit		A1	A2	A3	A4	A5
	GWP-total		kg CO ₂ -€	eq	1,01E+01	2,54E-01	9,11E-03	2,47E-02	1,49E-01
	GWP-fossil		kg CO ₂ -e	eq	1,02E+01	2,54E-01	8,58E-03	2,46E-02	1,45E-03
•	GWP-biogenic		kg CO ₂ -eq		-1,13E-01	9,18E-05	4,98E-04	1,01E-05	1,48E-01
•	GWP-luluc		kg CO ₂ -	eq	1,68E-02	1,19E-04	3,06E-05	8,69E-06	4,65E-07
(3)	ODP		kg CFC11	-eq	6,95E-07	5,60E-08	5,44E-10	5,67E-09	2,98E-10
C.	AP		mol H+ -	eq	9,15E-02	3,37E-03	5,92E-05	1,25E-04	6,67E-06
	EP-FreshWater		kg P -ec	1	1,78E-03	1,74E-06	5,40E-07	1,95E-07	1,16E-08
	EP-Marine		kg N -ed	7	1,25E-02	8,19E-04	7,24E-06	4,27E-05	2,25E-06
	EP-Terrestial		mol N -e	eq	1,46E-01	9,11E-03	8,78E-05	4,71E-04	2,39E-05
	POCP		kg NMVOC	-eq	4,37E-02	2,49E-03	2,37E-05	1,34E-04	6,88E-06
	ADP-minerals&metals ¹		kg Sb-ed	9	4,67E-03	5,20E-06	5,56E-07	6,73E-07	3,42E-08
	ADP-fossil ¹		МЈ		1,32E+02	3,63E+00	1,04E-01	3,75E-01	1,97E-02
\wedge			m^3		2.515 . 02	2 275 . 00	1,76E+01	3,57E-01	2,56E-02
<u>%</u>	WDP ¹		m ³		3,51E+02	2,27E+00	1,700-01	3,37E-UI	2,30E-UZ
(%)	WDP '		Unit m ³	В6	3,51E+02	C2	C3	C4	D
(%)				B6 7,65E+00					
	Indicator		Unit		C1	C2	C3	C4	D
	Indicator GWP-total		Unit kg CO ₂ -eq	7,65E+00	C1 0,00E+00	C2 2,49E-02	C3 3,04E-01	C4 3,46E-02	D -6,22E-01
	Indicator GWP-total GWP-fossil		Unit kg CO ₂ -eq kg CO ₂ -eq	7,65E+00 7,41E+00	C1 0,00E+00 0,00E+00	C2 2,49E-02 2,49E-02	C3 3,04E-01 3,04E-01	C4 3,46E-02 3,44E-02	D -6,22E-01 -6,19E-01
	Indicator GWP-total GWP-fossil GWP-biogenic		Unit kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq	7,65E+00 7,41E+00 2,05E-01	C1 0,00E+00 0,00E+00 0,00E+00	C2 2,49E-02 2,49E-02 1,01E-05	C3 3,04E-01 3,04E-01 5,37E-05	C4 3,46E-02 3,44E-02 1,96E-05	D -6,22E-01 -6,19E-01 -1,91E-03
	Indicator GWP-total GWP-fossil GWP-biogenic GWP-luluc		Unit kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq	7,65E+00 7,41E+00 2,05E-01 3,06E-02	C1 0,00E+00 0,00E+00 0,00E+00 0,00E+00	C2 2,49E-02 2,49E-02 1,01E-05 8,69E-06	C3 3,04E-01 3,04E-01 5,37E-05 5,82E-05	C4 3,46E-02 3,44E-02 1,96E-05 1,86E-04	D -6,22E-01 -6,19E-01 -1,91E-03 -1,25E-03
	Indicator GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP		Unit kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq	7,65E+00 7,41E+00 2,05E-01 3,06E-02 5,08E-07	C1 0,00E+00 0,00E+00 0,00E+00 0,00E+00	C2 2,49E-02 2,49E-02 1,01E-05 8,69E-06 5,67E-09	C3 3,04E-01 3,04E-01 5,37E-05 5,82E-05 2,34E-09	C4 3,46E-02 3,44E-02 1,96E-05 1,86E-04 1,46E-09	D -6,22E-01 -6,19E-01 -1,91E-03 -1,25E-03 -1,14E-03
	Indicator GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP		Unit kg CO ₂ -eq mol H+ -eq	7,65E+00 7,41E+00 2,05E-01 3,06E-02 5,08E-07 5,79E-02	C1 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00	C2 2,49E-02 2,49E-02 1,01E-05 8,69E-06 5,67E-09 1,02E-04	C3 3,04E-01 3,04E-01 5,37E-05 5,82E-05 2,34E-09 1,65E-04	C4 3,46E-02 3,44E-02 1,96E-05 1,86E-04 1,46E-09 1,08E-04	D -6,22E-01 -6,19E-01 -1,91E-03 -1,25E-03 -1,14E-03 -3,22E-02
	Indicator GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater		kg CO ₂ -eq kg CFC11 -eq mol H+ -eq kg P -eq	7,65E+00 7,41E+00 2,05E-01 3,06E-02 5,08E-07 5,79E-02 5,33E-04	C1 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00	C2 2,49E-02 2,49E-02 1,01E-05 8,69E-06 5,67E-09 1,02E-04 1,95E-07	C3 3,04E-01 3,04E-01 5,37E-05 5,82E-05 2,34E-09 1,65E-04 8,44E-07	C4 3,46E-02 3,44E-02 1,96E-05 1,86E-04 1,46E-09 1,08E-04 9,50E-07	D -6,22E-01 -6,19E-01 -1,91E-03 -1,25E-03 -1,14E-03 -3,22E-02 -1,79E-04
	Indicator GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater EP-Marine		kg CO ₂ -eq kg CFC11 -eq mol H+ -eq kg P -eq kg N -eq	7,65E+00 7,41E+00 2,05E-01 3,06E-02 5,08E-07 5,79E-02 5,33E-04 6,37E-03	C1 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00	C2 2,49E-02 2,49E-02 1,01E-05 8,69E-06 5,67E-09 1,02E-04 1,95E-07 3,01E-05	C3 3,04E-01 3,04E-01 5,37E-05 5,82E-05 2,34E-09 1,65E-04 8,44E-07 4,80E-05	C4 3,46E-02 3,44E-02 1,96E-05 1,86E-04 1,46E-09 1,08E-04 9,50E-07 3,72E-05	D -6,22E-01 -6,19E-01 -1,91E-03 -1,25E-03 -1,14E-03 -3,22E-02 -1,79E-04 -1,70E-03
	Indicator GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater EP-Marine EP-Terrestial		kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CFC11 -eq mol H+ -eq kg P -eq kg N -eq mol N -eq	7,65E+00 7,41E+00 2,05E-01 3,06E-02 5,08E-07 5,79E-02 5,33E-04 6,37E-03 8,29E-02	C1 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00	C2 2,49E-02 2,49E-02 1,01E-05 8,69E-06 5,67E-09 1,02E-04 1,95E-07 3,01E-05 3,33E-04	C3 3,04E-01 3,04E-01 5,37E-05 5,82E-05 2,34E-09 1,65E-04 8,44E-07 4,80E-05 5,12E-04	C4 3,46E-02 3,44E-02 1,96E-05 1,86E-04 1,46E-09 1,08E-04 9,50E-07 3,72E-05 2,51E-04	D -6,22E-01 -6,19E-01 -1,91E-03 -1,25E-03 -1,14E-03 -3,22E-02 -1,79E-04 -1,70E-03 -2,32E-02
	Indicator GWP-total GWP-fossil GWP-biogenic GWP-luluc ODP AP EP-FreshWater EP-Marine EP-Terrestial POCP		kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CO ₂ -eq kg CFC11 -eq mol H+ -eq kg P -eq kg N -eq mol N -eq g NMVOC -eq	7,65E+00 7,41E+00 2,05E-01 3,06E-02 5,08E-07 5,79E-02 5,33E-04 6,37E-03 8,29E-02 2,23E-02	C1 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00	C2 2,49E-02 1,01E-05 8,69E-06 5,67E-09 1,02E-04 1,95E-07 3,01E-05 3,33E-04 1,02E-04	C3 3,04E-01 3,04E-01 5,37E-05 5,82E-05 2,34E-09 1,65E-04 8,44E-07 4,80E-05 5,12E-04 1,33E-04	C4 3,46E-02 3,44E-02 1,96E-05 1,86E-04 1,46E-09 1,08E-04 9,50E-07 3,72E-05 2,51E-04 1,18E-04	D -6,22E-01 -6,19E-01 -1,91E-03 -1,25E-03 -1,14E-03 -3,22E-02 -1,79E-04 -1,70E-03 -2,32E-02 -6,72E-03

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer; AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Remarks to environmental impacts

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Additional e	Additional environmental impact indicators											
	Indicator	Unit		A1	A2	A3	A4	A5				
	PM	Disease incidence		5,62E-07	1,08E-08	4,28E-10	1,79E-09	9,80E-11				
(in))	IRP ²	kgBq U235 -eq		4,33E-01	1,56E-02	1,84E-03	1,64E-03	8,45E-05				
4	ETP-fw ¹	CTUe		9,53E+02	2,55E+00	4,68E-01	2,76E-01	2,62E-02				
40.*	HTP-c ¹	CTUh		1,24E-08	0,00E+00	2,20E-11	0,00E+00	0,00E+00				
49 <u>B</u>	HTP-nc ¹	CTUh		5,79E-07	2,09E-09	5,32E-10	2,98E-10	3,30E-11				
	SQP ¹	dimensionless		4,76E+01	1,89E+00	5,27E-02	2,58E-01	1,35E-02				
ı	ndicator	Unit	Unit B6		C2	C3	C4	D				
	PM	Disease incidence	4,15E-07	0,00E+00	1,79E-09	9,78E-10	1,98E-09	-7,53E-08				
(**) Q	IRP ²	kgBq U235 -eq	1,84E+00	0,00E+00	1,64E-03	1,44E-03	4,86E-04	-2,48E-02				
	ETP-fw ¹	CTUe	4,61E+02	0,00E+00	2,76E-01	1,06E+00	5,46E+00	-2,30E+02				
46.* *** <u>B</u>	HTP-c ¹	CTUh	2,20E-08	0,00E+00	0,00E+00	4,99E-10	9,40E-11	-1,25E-09				
% <u>B</u>	HTP-nc ¹	CTUh	5,18E-07	0,00E+00	2,98E-10	2,93E-08	6,78E-10	-8,52E-08				
	SQP ¹	dimensionless	5,10E+01	0,00E+00	2,58E-01	7,46E-02	6,92E-01	-6,23E+00				

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Resource use									
	Indicator		U	nit	A1	A2	А3	A4	A5
	PERE		MJ		1,28E+01	4,15E-02	1,31E+00	5,29E-03	3,27E-04
	PERM	PERM		MJ		0,00E+00	0,00E+00	0,00E+00	-9,53E-01
₽.	PERT		ı	MJ	1,38E+01	4,15E-02	1,31E+00	5,29E-03	-9,53E-01
8	PENRE		ı	MJ	1,23E+02	3,63E+00	1,04E-01	3,75E-01	1,97E-02
	PENRM		ī	MJ	1,01E+01	0,00E+00	0,00E+00	0,00E+00	-3,23E-02
I	PENRT		ī	MJ	1,32E+02	3,63E+00	1,04E-01	3,75E-01	-1,25E-02
<u></u>	SM		I	kg	9,98E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00
2	RSF		ı	ΜJ	2,09E-01	1,30E-03	1,04E-03	1,89E-04	1,08E-05
	NRSF		МЈ		5,69E-02	6,91E-03	2,57E-03	6,76E-04	4,43E-05
(%)	FW		m ³		1,03E-01	3,28E-04	9,96E-03	3,95E-05	9,33E-06
	ndicator		Unit	В6	C1	C2	C3	C4	D
	PERE		MJ	1,31E+03	0,00E+00	5,29E-03	3,82E-02	8,27E-02	-2,01E+00
	PERM		MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
° ₹₃	PERT		MJ	1,31E+03	0,00E+00	5,29E-03	3,82E-02	8,27E-02	-2,01E+00
	PENRE		MJ	1,01E+02	0,00E+00	3,75E-01	2,97E-01	2,60E-01	-8,73E+00
Å	PENRM		MJ	0,00E+00	0,00E+00	0,00E+00	-1,01E+01	0,00E+00	0,00E+00
IA	PENRT		MJ	1,01E+02	0,00E+00	3,75E-01	-9,80E+00	2,60E-01	-8,73E+00
<u></u>	SM		kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,17E-03	4,53E-03
2	RSF		MJ	1,03E+00	0,00E+00	1,89E-04	6,21E-04	2,05E-04	2,48E-04
	NRSF		MJ	2,56E+00	0,00E+00	6,76E-04	-2,90E-05	1,84E-02	-7,44E-02
8	FW		m ³	9,79E+00	0,00E+00	3,95E-05	4,98E-04	1,60E-04	-7,71E-03

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources used as raw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Waste											
		Unit		A1	A2	A3	A4	A5			
	HWD	HWD		kg		1,99E-04	4,84E-04	1,91E-05	0,00E+00		
	NHWD	NHWD		g	1,11E+00	1,24E-01	8,59E-03	1,79E-02	8,69E-02		
.	RWD		kg		3,36E-04	2,47E-05	9,21E-07	2,55E-06	0,00E+00		
In	dicator		Unit	В6	C1	C2	C3	C4	D		
Ā	HWD		kg	6,50E-02	0,00E+00	1,91E-05	1,43E-05	9,88E-02	-1,95E-03		
Ū	NHWD		kg	7,79E+00	0,00E+00	1,79E-02	1,93E-02	1,25E-01	-9,50E-02		
₩	RWD		kg	9,06E-04	0,00E+00	2,56E-06	7,11E-07	1,95E-07	-2,13E-05		

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life - Output flow												
Ind	icator		Unit		A1	A2	A3	A4	A5			
∅ >	CRU		kg		0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
&▷	MFR		kg		0,00E+00	0,00E+00	3,66E-03	0,00E+00	8,05E-02			
DØ	MER		kg		0,00E+00	0,00E+00	2,36E-03	0,00E+00	6,02E-03			
50	EEE		MJ		0,00E+00	0,00E+00	1,53E-03	0,00E+00	4,93E-03			
D®	EET		МЈ		0,00E+00	0,00E+00	2,32E-02	0,00E+00	7,45E-02			
Indicato	r	Un	it	В6	C1	C2	C3	C4	D			
@ D	CRU	kg	I	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00			
&>	MFR	kg	I	0,00E+00	0,00E+00	0,00E+00	4,23E-02	1,05E-05	1,89E-03			
DF	MER	kg	I	0,00E+00	0,00E+00	0,00E+00	1,16E-01	1,24E-06	-1,18E-05			
50	EEE	М	J	0,00E+00	0,00E+00	0,00E+00	1,79E-01	2,53E-05	-3,35E-05			
DI	EET	М	J	0,00E+00	0,00E+00	0,00E+00	2,71E+00	3,83E-04	-5,07E-04			

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content					
Unit	At the factory gate				
kg C	0,00E+00				
kg C	4,02E-02				
	kg C				

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Source	Amount	Unit
Electricity, Norway (kWh)	ecoinvent 3.6	24,33	g CO2-eq/kWh

Dangerous substances

The product contains no substances on the REACH Candidate list at or above 100 ppm, 0,01 % by weight.

Indoor environment

Additional Environmental Information

Additional environmental impact indicators required in NPCR Part A for construction products							
Indicator	Unit		A1	A2	A3	A4	A5
GWPIOBC	kg CO ₂ -eq		1,02E+01	2,54E-01	9,06E-03	2,47E-02	6,75E-04
Indicator	Unit	В6	C1	C2	C3	C4	D
GWPIOBC	kg CO ₂ -eq	7,63E+00	0,00E+00	2,49E-02	3,04E-01	2,68E-02	-6,20E-01

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010. Environmental labels and declarations - Type III environmental declarations - Principles and procedures. International Organization for Standardization.

ISO 14044:2006. Environmental management - Life cycle assessment - Requirements and guidelines. International Organization for Standardization.

EN 15804:2012+A2:2019. Environmental product declaration - Core rules for the product category of construction products. European Committee for Standardization.

ISO 21930:2017. Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products. International Organization for Standardization.

EN 50693:2019. Product category rules for life cycle assessments of electronic and electrical products and systems. European Committee for Standardization

Ecoinvent v3, 2019. Allocation, cut-off by classification. Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021). eEPD v2021.09, background information for EPD generator tool system verification, LCA.no. Report number: 07.21. System verification report.

Ruud & Philis (2023). EPD generator for PCR EPD Italy 012 part B for switches, background information for EPD generator application and LCA data, LCA.no. Report number: 01.23. PCR verification report.

EPD Italy (2020). PCR EPD Italy 007 Part A for electronic and electrical products and systems. EPD Italy. Version 3, issue 13-01-2023 and valid until 19-01-2025.

EPD Italy (2020). PCR EPD Italy 012 Part B for switches. EPD Italy. Version 0, issue 16-03-2020 and valid until 15-03-2025.

and navae	Program operator and publisher	Phone:	+47 977 22 020
© epd-norge	The Norwegian EPD Foundation	e-mail:	post@epd-norge.no
Global program operatør	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web:	www.epd-norge.no
	Owner of the declaration:	Phone:	+47 40006023
CTM LYNG	CTM Lyng AS	e-mail:	vidar@ctmlyng.no
	Verkstedveien 19, 7125 Vanvikan, Norway	web:	ctmlyng.no
	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
(LCA\	LCA.no AS	e-mail:	post@lca.no
.no	Dokka 6A, 1671 Kråkerøy, Norway	web:	www.lca.no
	Developer of EPD generator	Phone:	+47 916 50 916
(LCA\	LCA.no AS	e-mail:	post@lca.no
.no	Dokka 6A, 1671 Kråkerøy, Norway	web:	www.lca.no
ECD PLATFORM	ECO Platform	web:	www.eco-platform.org
VERIFIED	ECO Portal	web:	ECO Portal