

PRODUCT ENVIRONMENTAL PROFILE Environmental Product Declaration ABB Fuse Switch Disconnector – ZLBM00-100-3P-M8

REGISTRATION NUMBER	R	IN COMPLIANCE WITH PCR-ED4-EN-2021 09 06		
ABBG-00190-V01.01-EN		SUPPLEMENTED BY PSR-0005-ED2-EN-2016 03 29		
VERIFIER ACCREDITATIO	ON NUMBER	INFORMATION AND REFERENCE DOCUMENTS		
VH50		www.pep-ecopassport.org		
DATE OF ISSUE		VALIDITY PERIOD		
10-2023		5 years		
INDEPENDENT VERIFIC	ATION OF THE DECLARATION AND DATA	, IN COMPLIANCE WITH ISO 14025: 2006		
INTERNAL	EXTERNAL 🗵			
THE PCR REVIEW WAS C	CONDUCTED BY A PANEL OF EXPERTS C	HAIRED BY JULIE ORGELET (DDEMAIN)		
PEP ARE COMPLIANT W	VITH XP C08-100-1 :2016 OR EN 50693:20			
THE ELEMENTS OF THE	PRESENT PEP CANNOT BE COMPARED	WITH ELEMENTS FROM ANOTHER PROGRAM.		
DOCUMENT IN COMPLI ENVIRONMENTAL DECL		MENTAL LABELS AND DECLARATIONS. TYPE III		

© Copyright 2023 ABB. All rights reserved.

EPD Owner	ABB Oy, Smart Power, P.O.Box 622, FI-65101 Vaasa, Finland www.abb.com
Manufacturer name and address	ABB Bulgaria EOOD - Rakovski branch Rakovski, Industrial road 1, 14, 4142 Stryama, Bulgaria
Company contacts	EPD_ELSP@in.abb.com
Reference product	ABB Fuse Switch Disconnector ZLBM00-100-3P-M8
Description of the product	InLine II covers a wide range of distribution applications from single panels to industrial, residential, and commercial buildings. A wide range of accessories make the installation flexible easy and fast. Fuse switch disconnectors can be fitted onto 100 mm busbar systems and 185 mm systems by means of busbar adapters. The degree of protection is IP30 from the front in closed and IP20 in open position.
	The functional unit to this study is a single Fuse Switch Disconnector (includ- ing its packaging and accessories), establish, support and interrupt for 20 years rated currents in normal conditions of circuit characterized by the cur- rent I_{th} , including any conditions specified for overload in operation character- ized by the current I_e , for the operating voltage U_e
Functional unit	U _e = Rated voltage (V) = 800 I _e = Rated current in continuous operation (A) = 125

Other products covered	-
Reference lifetime	20 years
Product category	Electrical, Electronic and HVAC-R Products
Use Scenario	The use phase has been modeled based on the sales mix data (2021), and the corresponding low voltage electricity countries mix.
Geographical representativeness	Raw materials & Manufacturing: [Europe / Global] Assembly: [Bulgaria] Distribution / Use: [Global] specific sales mix EoL: [Global]
Technological representa- tiveness	Materials and processes data are specific to the production of InLine II Fuse Switch Disconnector
LCA Study	This study is based on the LCA study described in the LCA report 1SCC311185D0201
EPD type	Product family declaration
EPD scope	"Cradle to grave"
Year of reported primary data	2021
LCA software	SimaPro 9.3.0.3 (2022)
LCI database	Ecoinvent v3.8 (2021)
LCIA methodology	EN 15804:2012+A2:2019

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00190-V01.01-EN	1SCC311184D0201	A.002	en	2/16
© Copyright 2023 ABB. All rights reserved.						

Contents

ABB Purpose & Embedding Sustainability4
General Information
Constituent Materials
LCA background information 7 Functional unit and Reference Flow 7 System boundaries and life cycle stages 7 Temporal and geographical boundaries 8 Boundaries in the life cycle 8 Data quality 8 Environmental impact indicators 8 Allocation rules 9 Limitations and simplifications 9 Energy Models 9
Inventory analysis
Environmental impacts13
Additional environmental information15
Reference16

status Approved			REV. A.002		PAGE 3/16
	ABB. All rights reserved.	130031118400201	A.002	en	5/10

ABB Purpose & Embedding Sustainability

ABB is a leading global technology company that energizes the transformation of society and industry to achieve a more productive, sustainable future. By connecting software to its electrification, robotics, automation and motion portfolio, ABB pushes the boundaries of technology to drive performance to new levels. With a history of excellence stretching back more than 130 years, ABB's success is driven by about 105 thousand talented employees in over 100 countries.

ABB's Electrification business offers a wide-ranging portfolio of products, digital solutions and services, from substation to socket, enabling safe, smart and sustainable electrification. Offerings encompass digital and connected innovations for low voltage and medium voltage, including EV infrastructure, solar inverters, modular substations, distribution automation, power protection, wiring accessories, switchgear, enclosures, cabling, sensing and control. ABB is committed to continually promoting and embedding sustainability across its operations and value chain, aspiring to become a role model for others to follow. With its ABB Purpose, ABB is focusing on reducing harmful emissions, preserving natural resources and championing ethical and humane behavior.

General Information

ABB has over 2800 employees in Bulgaria and operates with head office in Sofia and five branches across the country. Two of the manufacturing units are located in Industrial area Rakovski (about 25km to the second largest city – Plovdiv).

The production has already been certified ISO 9001, ISO 14001, ISO 27001, ISO 45001, and ISO 50001, as a recognition for the company's strong process management and organizational structure, which are capable to Increase the efficiency in the development of the products, as well as in the supply and service activities.

Both factories successfully combine several different types of production for low and medium voltage components:

- Line Protection Devices
- Components for medium voltage equipment
- Low Voltage Breakers Components
- Miniature Circuit Breakers
- Safety switches and enclosed switch disconnectors
- Surge Protection Device
- Low voltage cabinets
- Low Voltage Contactors components
- Semi-Finished and Finished Contactors
- Fusegears (Fuse switch disconnectors)

Fuse switch disconnectors are divided in families. The InLine II family consists of 1 and 3 pole solutions. All variants of poles are available in different fuse sizes/rated operational currents from 100A up to 630A: ZLBM/ZHBM 160A, 250A, 400A and 630A.

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00190-V01.01-EN	1SCC311184D0201	A.002	en	4/16
© Copyright 202	23 ABB. All rights reserved.					1

InLine II - ZLBM00-100-3P-M8 product cluster

InLine II covers a wide range of distribution applications from single panels to industrial, residential, and commercial buildings. A wide range of accessories make the installation flexible easy and fast. Fuse switch disconnectors can be fitted onto 100 mm busbar systems and 185 mm systems by means of busbar adapters. The degree of protection is IP30 from the front in closed and IP20 in open position.

ZLBM00-100-3P-M8 product rating:

Fuse Switch Disconnector	ZLBM00-100-3P-M8
Rated voltage [V]	800
Rated current [A]	125

Table 1: Technical characteristics of Fuse Switch Disconnectors (Refer Technical catalogue for complete details).

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00190-V01.01-EN	1SCC311184D0201	A.002	en	5/16
© Copyright 2023 ABB. All rights reserved.						

Constituent Materials

ZLBM00-100-3P-M8 Fuse Switch Disconnector

ZLBM00-100-3P-M8 Fuse switch Disconnectors weighs 1039 g including its installed accessories, paper documentation and packaging.

Materials	Name	IEC 62474 MC	[g]	Weight %
	Cu and Cu Alloys	M-121	234.8	22.6%
Metals	Steel	M-119	95.0	9.1%
	Zinc Alloys	M-124	18.0	1.7%
	Polyamide	M-258	569.9	54.8%
Plastics	Polycarbonate	M-254	79.5	7.6%
Plastics	Polyethylene	M-251	38.2	3.7%
	Polypropylene	M-252	0.1	<0.1%
Others	Paper/Cardboard	M-341	3.8	0.4%
Total			1039.3	100.0%

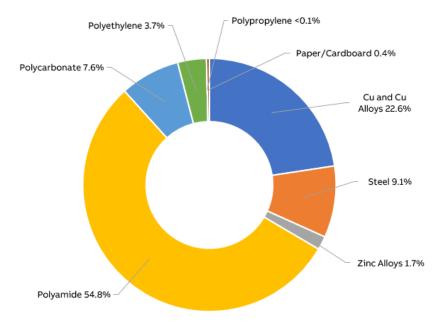


Table 2: Weight of materials ZLBM00-100-3P-M8 Fuse Switch Disconnector

Figure 1: Composition of ZLBM00-100-3P-M8 Fuse Switch Disconnector

Packaging for reference product ZLBM00-100-3P-M8 weighs 38 g, with the following substance composition:

Material	Unit	Total
Polyethylene	g	38.20

Table 3: Weight of packaging materials ZLBM00-100-3P-M8 Fuse Switch Disconnector

No cut-off criteria have been applied to the analysis of the product and its packaging. Additional packaging for semifinished products along the supply chain haven't been considered.

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00190-V01.01-EN	1SCC311184D0201	A.002	en	6/16
© Copyright 2023 ABB. All rights reserved.						

•
• I

LCA background information

Functional unit and Reference Flow

The functional unit is the reference unit used to quantify the performance of the service delivered by a product to the user. The main purpose of the functional unit is to provide a reference to which inputs and outputs are related in the LCA.

Establish, support and interrupt for 20 years rated currents in normal conditions of circuit characterized by the current Ith, including any conditions specified for overload in operation characterized by the current Ie, for the operating voltage Ue.

Fuse Switch Disconnector	ZLBM00-100-3P-M8
U_e = Rated voltage (V)	800
I _{th} = Rated current in continuous operation (A)	125
Table 4: Functional unit	

The Reference Flow of the study is a single Fuse Switch Disconnector (including its packaging and accessories) with mass described in chapter 1.3, table 2 & 3.

System boundaries and life cycle stages

The life cycle of the Fuse Switch Disconnector, an EEPS (Electronic and Electrical Products and Systems), is a "from cradle to grave" analysis and covers the following main life cycle stages: manufacturing, including the relevant acquisition of raw material, preparation of semi-finished goods, etc. and processing steps; distribution; installation, including the relevant steps for the preparation of the product for use; use including the required maintenance steps within the RSL (reference service life of the product) associated to the reference product; end-of-life stage, including the necessary steps until final disposal or recovery of the product system.

The following table shows the stages of the product life cycle and the information stages according to EN 50693:2019 [3] for the evaluation of electronic and electrical products and systems.

Manufacturing	Distribution	Installa- tion	Use	End-of-Life (EoL)
Acquisition of raw materials				
Transport to manufacturing site		Installation		Deinstalla- tion
Components/parts manufactur- ing	Transport to distrib- utor/ logistic center	EoL treat- ment of	Usage	Collection and
Assembly	Transport to place of	generated	Mainte- nance	transport
Packaging EoL treatment of generated waste	use	waste (packaging)	narice	EoL treat- ment

Table 5: Phases for the evaluation of construction products according to EN50693:2019 [3].

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00190-V01.01-EN	1SCC311184D0201	A.002	en	7/16
© Copyright 2023 ABB. All rights reserved.						

Temporal and geographical boundaries

The ABB component suppliers are sourced all over the world. All primary data collected are from 2021, which is a representative production year. Secondary data are also representative for this year, as provided by ecoinvent [6].

The selected ecoinvent [6] processes in the LCA model have a global representativeness, due to the unclear origin of each component. In this way, a conservative approach has been adopted.

Boundaries in the life cycle

As indicated in the PCR capital goods such as buildings, machinery, tools and infrastructure, the packaging for internal transport which cannot be allocated directly to the production of the reference product, may be excluded from the system boundary.

Infrastructures, when present, such as processes deriving from the ecoinvent [6] database have not been excluded.

Data quality

In this LCA, both primary and secondary data are used. Site specific foreground data have been provided by ABB. Main data sources are the bill of materials & drawings which are available on the ERP (SAP) & Windchill. For all processes for which primary are not available, generic data originating from the ecoinvent database [6], allocation cut-off by classification, are used. The ecoinvent database available in the SimaPro software [7] is used for the calculations.

The data quality characterized by quantitative and qualitative aspects, is presented in Appendix 1. Each data quality parameter has been rated according to DQR tables from Chapter 7.19.2.2 of the Product Environmental Footprint Guide v.6.3 to give an indication of geography, technology and temporal representativeness.

Environmental impact indicators

The information obtained from the inventory analysis is aggregated according to the effects related to the various environmental issues. According to "PCR-ed4-EN-2021 09 06" and EN 50693 [3] the environmental impact indicators must be determined using the characterization factors and impact assessment methods specified in EN 15804:2012+A2:2019 [8].

PCR-ed4-EN-2021 09 06 and the EN 50693:2019 [3] standard establish four indicators for climate change: Climate change (total) which includes all greenhouse gases; Climate change (fossil fuels); Climate change (biogenic) which includes the emissions and absorption of biogenic carbon dioxide and biogenic carbon stored in the product; Climate change (land use) - land use and land use transformation. Other indicators as per the PCR [1].

Approved	Public	ABBG-00190-V01.01-EN	1SCC311184D0201	A.002	en	8/16
STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE

Allocation rules

Allocation coefficients are based on the InLine II line's occupancy area for electricity and the total amount of waste generated by the production line.

The total number of operators was considered for water consumption. All these flows have been allocated and divided by the total number of InLine II Fuse Switch Disconnector produced in 2021.

Limitations and simplifications

Raw materials life cycle stage includes the extraction of raw materials as well as the transport distances to the manufacturing suppliers. These distances are assumed to be 1000 km as per the PCR. This distance has been added to the one already included in the market processes used for the model, as a result of a conservative choice made by the LCA operators.

Application of grease lubricant on the Fuse Switch Disconnector operating mechanism has been excluded since it is negligible. Surface treatments like galvanizing, silver plating as well as their related transport processes (back and forth from the finishing suppliers) have been considered in the LCA model. Scraps for metal working and plastic processes are included when already defined in ecoinvent [6].

Energy Models

LCA Stage	EN 15804:2012 +A2:2019 module	Energy model	Notes
Raw material ex- traction and pro- cessing	A1-A2	Electricity, {RER} mar- ket group for Cut-off Electricity, {GLO} mar- ket group for Cut-off	Based on materials and supplier's locations
Manufacturing	A3	ABB Green Mix	Specific Energy model for ABB Sweden manufactur- ing plant, 100% renewable
Installation (Packaging EoL)	A5	Electricity, {GLO} mar- ket group for Cut-off Electricity, [country]x	
Use Stage	B1	market for Cut-off, S **	Low voltage, based on 2021 country sales mix
EoL	C1-C4	Electricity, {GLO} mar- ket group for Cut-off	

Table 6: Energy models used in each LCA stage

** Please refer the use phase for further description

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00190-V01.01-EN	1SCC311184D0201	A.002	en	9/16
© Convright 202	3 ABB. All rights reserved.		I			1

ſ	<	
I		
L		

Inventory analysis

In this LCA, both primary and secondary data are used. Site specific foreground data have been provided by ABB. For data collection, Bills of Material (BOM) extracted from ABB's internal SAP and Windchill ERP were used. They are a list of all the components and assemblies that constitute the finished product, organized by hierarchy level. Each item is matched with its code, quantity, weight and supplier. The BOMs were then processed, adding material, surface area, volume and weight data, taken from technical drawings/datasheets. Finally, the manufacturing process and surface treatment were assigned, according to information provided by R&D personnel. Road distances between the suppliers and ABB were calculated using Google Maps, and marine distances using Distances & Time (Searates).

All primary data collected from ABB are from 2021, which was a representative production year. The ecoinvent cut-off by classification system processes [6] are used to represent the LCA model

To improve both the inventory and modelling phase of the product, a specific modular dataset framework has been adopted. Raw materials and Manufacturing processes datasets from Ecoinvent database [6] have been clustered and listed inside two distinct mater data tables ABB Raw Materials and ABB Materials & Processes. Data used in the analysis is not older than 10 years.

Manufacturing stage

The Fuse Switch Disconnectors are composed of a multitude of components, all of which are made from of numerous materials. Most of the inputs to the products' manufacturing stage are already produced component parts.

All the fuse switch disconnector's components have been modelled according to their specific raw materials and manufacturing processes.

The paper documentation is included in the analysis in the manufacturing stage. ABB receives semifinished products, does the surface treatment, assembly, testing, packaging and delivers to the customer according to the orders.

The entire supplier's network has been modelled with the calculation of each transportation stage, from the first manufacturing supplier to the next.

All the distances from the last subassembly suppliers' factories to the ABB facility have been calculated.

The energy mix used for the production phase is representative for ABB production site and includes renewable energy only (Wind).

The complete energy mix has been modeled considering the Energy Certificate from the supplier.

Distribution

The transport distances from ABB manufacturing plant to the distribution centers (regional distribution centers / local sales organizations) have been calculated considering the specific 2021 sales mix data for InLine II product cluster (SAP ERP sales data as a source). The Distribution mix is representative of entire product cluster including reference product and products listed in the extrapolation tables.

© Copyright 2023 ABB. All rights reserved.						
Approved	Public	ABBG-00190-V01.01-EN	1SCC311184D0201	A.002	en	10/16
STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE

The other parameter affecting the environmental impact for this LCA stage is total mass of the product (including its packaging). Different mass values for each specific configuration covered by this study have been considered in the model

As per PSR, additional distance 1000km is considered to account for the last mile delivery distance.

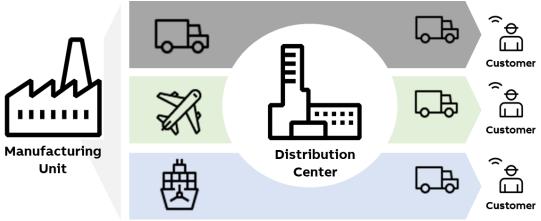


Figure 2: Distribution methodology.

Installation

The installation phase only implies manual activities, and no energy is consumed. This phase also includes the disposal of the packaging of the Fuse switch Disconnector.

For the disposal of the packaging after installation of the product at the end of its life, a transport distance of 1000 km (according to PCR [1]) was assumed.

The actual disposal site is unknown and is managed by the customer. The disposal scenario of the packaging was calculated based on the latest Eurostat data (EU-27) available.

Use

Use and maintenance are modelled according to the PCR [1].

During the use phase, InLine II Fuse Switch Disconnectors dissipate some electricity due to power losses. They are calculated according to the data provided in the catalogue of the fuse switch disconnector and following the PCR [1] & PSR [2] rules:

Parameters					
I _{th}	[A]	125			
I _{th}	[%]	50			
h/year	[h]	8760			
RSL	[years]	20			
Time operating coefficient (α)	[%]	30			

The formula for the calculation of the electricity consumed is shown below and it is described as follows, where P_{use} is the power consumed by the switch at a given value of current:

$$E_{use} [kWh] = \frac{P_{use} * 8760 * RSL * \alpha}{1000}$$

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00190-V01.01-EN	1SCC311184D0201	A.002	en	11/16
© Copyright 2023 ABB. All rights reserved.						

The above calculations have been performed according to the number of poles (3) on which relevant current flows during use phase.

The Energy model used for this phase was built based on the 2021 actual sales mix data for the entire InLine II product range (SAP ERP sales data as a source). This approach has been taken since this list of countries will be the most representative also for the other products listed in the extrapolation tables.

From Ecoinvent [6] database, the low voltage electricity country mix for each country(x) has been selected with its respective percentage on the total sales mix (Electricity, low voltage [country]x | market for | Cut-off, S).

Since no maintenance happens during the use phase, the environmental impacts linked to this procedure have been considered as null in the analysis.

End of life

The end-of-life stage is modelled according to PCR [1] and IEC/TR 62635 [9]. The percentages for end-of-life treatments of materials are taken from IEC/TR 62635 [9].

Since no specific data is available, the transport distances from the place of use to the place of disposal are assumed to be 1000 km (local/domestic transport by lorry, according to PCR [1]).

PAGE	LANG.	REV.	DOCUMENT ID.	PEP ECOPASSPORT REG. NUMBER	SECURITY LEVEL	STATUS
12/16	en	A.002	1SCC311184D0201	ABBG-00190-V01.01-EN	Public	Approved
12/1	en	A.002	1SCC311184D0201	ABBG-00190-V01.01-EN	Public 23 ABB. All rights reserved.	

Environmental impacts

The following table show the environmental impact indicators of the life cycle of a single ZLBM00-100-3P-M8 Fuse Switch Disconnector, as indicated by PCR [1] and EN 50693:2019 [3]. The indicators are divided into the contribution of the processes to the different stages (manufacturing, distribution, installation, use and end-of-life).

Impact category	Unit	Total	Manuf	Distr	Install	Use	EoL
GWP-total	kg CO2 eq	2.46E+02	8.43E+00	2.76E-01	1.46E-02	2.37E+02	2.85E-01
GWP-fossil	kg CO2 eq	2.28E+02	8.36E+00	2.75E-01	1.46E-02	2.19E+02	2.81E-01
GWP-biogenic	kg CO2 eq	1.74E+01	6.17E-02	2.78E-04	7.79E-06	1.74E+01	3.83E-03
GWP-luluc	kg CO2 eq	2.66E-01	5.79E-03	9.78E-05	1.67E-06	2.60E-01	2.06E-04
ODP	kg CFC11 eq	9.62E-06	3.19E-07	6.61E-08	9.48E-10	9.21E-06	2.62E-08
AP	mol H+ eq	8.29E-01	1.50E-01	1.40E-03	2.15E-05	6.76E-01	1.60E-03
EP-freshwater	kg P eq	2.97E-01	1.02E-02	1.70E-05	2.80E-07	2.87E-01	6.98E-05
EP-marine	kg N eq	1.81E-01	1.48E-02	4.81E-04	2.37E-05	1.65E-01	4.00E-04
EP-terrestrial	mol N eq	1.44E+00	1.39E-01	5.26E-03	8.17E-05	1.29E+00	3.51E-03
POCP	kg NMVOC eq	3.81E-01	4.04E-02	1.57E-03	2.52E-05	3.38E-01	1.02E-03
ADP-m&m	kg Sb eq	4.81E-03	2.90E-03	6.23E-07	9.40E-09	1.91E-03	2.86E-07
ADP-fossil	MJ	3.23E+03	1.21E+02	4.31E+00	6.36E-02	3.10E+03	3.23E+00
WDP	m3	3.89E+01	7.26E+00	1.47E-02	5.89E-04	3.16E+01	2.30E-02
PENRE	MJ	3.21E+03	1.03E+02	4.31E+00	6.36E-02	3.10E+03	3.23E+00
PENRM	Ш	1.80E+01	1.80E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	Ш	3.23E+03	1.21E+02	4.31E+00	6.36E-02	3.10E+03	3.23E+00
PERE	Ш	7.44E+02	9.70E+00	5.40E-02	8.67E-04	7.34E+02	2.56E-01
PERM	MJ	4.48E-02	4.48E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	MJ	7.44E+02	9.74E+00	5.40E-02	8.67E-04	7.34E+02	2.56E-01
SM	kg	1.75E-01	1.75E-01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	m3	2.18E+00	1.80E-01	5.05E-04	1.65E-05	2.00E+00	9.86E-04
HWD	kg	5.28E-03	4.20E-04	1.05E-05	1.50E-07	4.84E-03	3.97E-06
N-HWD	kg	1.58E+01	1.24E+00	3.95E-01	4.15E-02	1.39E+01	1.89E-01
RWD	kg	1.27E-02	2.27E-04	2.92E-05	4.20E-07	1.25E-02	1.41E-05
MfR	kg	1.15E+00	2.20E-01	0.00E+00	0.00E+00	0.00E+00	9.27E-01
MfER	kg	8.78E-03	0.00E+00	0.00E+00	1.91E-03	0.00E+00	6.87E-03
Efp	disease inc.	3.39E-06	6.19E-07	3.24E-08	4.83E-10	2.71E-06	2.71E-08
IrHH	kBq U-235 eq	4.19E+01	6.06E-01	2.18E-02	3.17E-04	4.12E+01	2.06E-02
ETX FW	CTUe	3.43E+03	1.02E+03	3.35E+00	5.30E-02	2.40E+03	5.76E+00
HTX CE	CTUh	9.78E-08	2.53E-08	9.18E-11	1.67E-12	7.21E-08	3.49E-10
HTX N-CE	CTUh	4.15E-06	1.66E-06	3.69E-09	5.97E-11	2.47E-06	2.14E-08
IrLS	Pt	7.77E+02	5.45E+01	4.84E+00	8.35E-02	7.15E+02	2.45E+00

Table 8: Impact indicators for ZLBM00-100-3P-M8 Fuse Switch Disconnectors

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00190-V01.01-EN	1SCC311184D0201	A.002	en	13/16
<u> </u>	23 ABB. All rights reserved.			7		10/10

Impact category	Unit	ZLBM00-100-3P-M8
Biogenic Carbon content of the product	kg	1.85E-03
Biogenic Carbon content of the associated packaging	kg	-

Table 9: Inventory flow other indicators

Environmental impact indicators

GWP-total	Global Warming Potential total (Climate change)
GWP-fossil	Global Warming Potential fossil
GWP-biogenic	Global Warming Potential biogenic
GWP-luluc	Global Warming Potential land use and land use change
ODP	Depletion potential of the stratospheric ozone layer
AP	Acidification potential
EP-freshwater	Eutrophication potential - freshwater compartment
EP-marine	Eutrophication potential - fraction of nutrients reaching marine end compartment
EP-terrestrial	Eutrophication potential -Accumulated Exceedance
POCP	Formation potential of tropospheric ozone
ADP-m&m	Abiotic Depletion for non-fossil resources potential
ADP-fossil	Abiotic Depletion for fossil resources potential, WDP
WDP	Water deprivation potential.

Resource use indicators

PERE	Use of renewable primary energy excluding renewable primary en- ergy resources used as raw material
PERM	Use of renewable primary energy resources used as raw material
PERT	Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)
PENRE	Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw material
PENRM	Use of non-renewable primary energy resources used as raw ma- terial
PENRT	Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials)

Secondary material	ls, water and	energy resources
--------------------	---------------	------------------

SM	Use of secondary materials
RSF	Use of renewable secondary fuels
NRSF	Use of non-renewable secondary fuels
FW	FW: Net use of fresh water

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00190-V01.01-EN	1SCC311184D0201	A.002	en	14/16
© Copyright 2023 ABB. All rights reserved.						

Waste category indicators

HWD	Hazardous waste disposed
N-HWD	Non-hazardous waste disposed
RWD	Radioactive waste disposed

Output flow indicators

MfR	Materials for recycling
MfER	Materials for energy recovery

Others indicators

Efp	Emissions of Fine particles
IrHH	Ionizing radiation, human health
ETX FW	Ecotoxicity, freshwater
HTX CE	Human toxicity, carcinogenic effects
HTX N-CE	Human toxicity, non-carcinogenic effects
lrLS	Impact related to Land use / soil quality

Additional environmental information

According to the waste treatment scenario calculation in Simapro [7], based on the recycling rate in the technical report IEC/TR 62635 Edition 1.0 [9] Table D.6, the following recyclability potentials were calculated. The recyclability potential is calculated based on the product weight (excluding packaging).

Table 10: Recyclability potential of ZLBM00-100-3P-M8

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	ABBG-00190-V01.01-EN	1SCC311184D0201	A.002	en	15/16		
© Copyright 2023 ABB. All rights reserved.								

Reference

- [1] PCR "PEP-PCR-ed4-EN-2021_09_06" Product Category Rules for Electrical, Electronic and HVAC-R Products (published: 6th September 2021)
- [2] PSR "PSR-0005-ed2-EN-2016 03 29" SPECIFIC RULES FOR Electrical switchgear and control gear Solutions
- [3] EN 50693:2019 Product category rules for life cycle assessments of electronic and electrical products and systems
- [4] ISO 14040:2006 Environmental management -Life cycle assessment Principles and framework
- [5] ISO 14044:2006 Environmental management Life cycle assessment Requirements and guidelines
- [6] ecoinvent v3.8 (2021). ecoinvent database version 3.8 (https://ecoinvent.org/)
- [7] SimaPro Software version 9.3.0.3 PRé Sustainability
- [8] UNI EN 15804:2012+A2:2019: Sustainability of constructions Environmental product declarations (September 2019).
- [9] IEC/TR 62635 Guidelines for end-of-life information provided by manufacturers and recyclers and for recyclability rate calculation of electrical and electronic equipment -Edition 1.0 2012-10

STATUS	SECURITY LEVEL	PEP ECOPASSPORT REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE		
Approved	Public	ABBG-00190-V01.01-EN	1SCC311184D0201	A.002	en	16/16		
© Copyright 2023 ABB. All rights reserved.								